
JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

36

Irfan Syamsuddin1, Siska Ihdianty2, Eddy Tungadi3, Kasim4, Irawan5

1,2,3,4,5 Politeknik Negeri Ujung Pandang , Indonesia

irfansyam@yahoo.com

Abstract-- Information security plays a significant role

in information society. Cryptography is a key proof of

concept to increasing the security of information assets

and has been deployed in various algorithms. Among

cryptography algorithms is Extended Tiny Encryption

Algorithm. This study aims to describe a recent Android

Apps to realize XTEA Cryptography in mobile form. In

addition, a thorough example is presented to enable

readers gain understanding on how it works within our

Android Apps.

Keywords: information security; cryptography; XTEA;

mathematics visualization

I. INTRODUCTION

The role of information security has gained more serious

concerns particularly in the last two decades. The more

dependent organizations on access, store, and transfer their

information through the internet, the more probability of cyber

security attacks they could face [1].

This concern is what causes obstruction in the delivery of

information, therefore methods and techniques is strongly

needed to securely manage the security of information. One of

the paramount solutions is the application of cryptography[2].

Cryptography is used to randomize messages between two

communicating parties, so that the other party who gets the

encrypted message cannot decrypt it without the correct

password. Cryptography disguises the meaning of a message,

for example by scrambling or encoding the message. With

cryptography, if the message falls into the wrong hands, it is

hoped that the person will not get the desired information [3].

Cryptography has been applied in many ways although

generally it is grouped into symmetric and asymmetric

cryptography. While symmetric cryptography uses the same

key in performing encryption and decryption, asymmetric

cryptography creates different key for encryption and

decryption [4][5][6].

Among many symmetric cryptography, Extended Tiny

Encryption Algorithm (XTEA) was proposed by Wheeler and

Needham in 1997 [1][2]. It is designed to cover weaknesses in

the TEA which was previously introduced but then some

serious bugs found.

It is a simple but powerful cryptography algorithm which

was considered applicable to be implemented in today’s

mobile communication era.

In this paper, we introduce a work in progress Secure Chat

application based on Android environment and then

demonstrate the way message encrypted and decrypted using

XTEA algorithm.

The rest of paper is organized in the following structure.

Section 2 presents literature review of XTEA. In section 3,

Secure Chat application based on Android is presented. Then,

the next section presents the actual encryption and decryption

mechanisms are exemplified in section 4. Finally, concluding

remarks are given in section 5.

TEA is a symmetrical algorithm. TEA is a block cipher

algorithm created by David J. Wheeler and Roger M.

Needham of Cambridge University in 1994. TEA operates in a

size of 64 bits and a key length of 128 bits[1][2].

The TEA is based on a feitsel network and has 32 turns.

The key of K will first be divided into 4 internal keys, namely

K [0..3] each 32 bits long. Each TEA round consists of two

Feitsel rounds (see figure 2.4). The scheduling of the TEA key

is very simple, namely K [0] and K [1] are used for odd

rounds, while K [2] and K [3] are used for even rounds

(William, 2009). The form of one round of encryption in the

Feitsel network belonging to the Tiny Encryption (TEA)

Algorithm, can be seen in Figure 1.

In 1997, David Wagner and Kesley found TEA

susceptibility to equivalent key and related key attacks due to

the simplicity of key scheduling. The equivalent key that TEA

has is that for each key there are three other keys that produce

the same ciphertext. These keys are obtained by reversing the

Most Significant Bit (MSB) values in K [0] and K [1] or K [2]

and K [3] so that the 128-bit key length will only produce

2126 different keys (William, 2009).

In the algorithm, there is a DELTA number which is

obtained from the golden number formula: delta = which

produces the number 0x9E3779B9. The following is an

example of evidence of the existence of the equivalent key in

the TEA.(√5 − 1)231.

As a result, Wheeler and Needham released the XTEA

which was designed to cover weaknesses in the TEA in 1997.

TABLE I

Equivalent key in TEA (Source: William, 2009)

XTEA CRYPTOGRAPHY IMPLEMENTATION

IN ANDROID CHATTING APP

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

37

Plaintext Key Ciphertext

00000000

00000000

80000000 00000000

00000000 00000000

9327c497

31b08bbe

00000000

00000000

00000000 80000000

00000000 00000000

9327c497

31b08bbe

00000000

00000000

80000000 00000000

80000000 80000000

9327c497

31b08bbe

00000000

00000000

00000000 80000000

80000000 80000000

9327c497

31b08bbe

 Extended Tiny Encryption Algorithm(XTEA) also

operates in a block size of 64 bits and a key length of 128 bits.

The form of the Feitsel network is still the same, only the

difference between the Feitsel function and the key scheduling

used. The key scheduling in XTEA is odd rounds using K

[sum & 3], while even rounds use K] sum >> 1 & 3].

XTEA which is a derivative of the TEA algorithm is Feitsel

cryptography and uses operations that are included in mixed

algebra (orthogonal) such as XOR, ADD, and SHIFT. The

form of one loop in the Feitsel network belonging to the

Extended Tiny Encryption (XTEA) algorithm, can be seen in

Figure 2.5

Fig 1. One round of encryption in XTEA's Feitsel network

According to William [1][2], the explanation of Figure 2.5

which is one rotation in XTEA's Feitsel network is as in the

formula below:

- The inputted 128-bit key will be partitioned into 4

sublocks consisting of s [0] = 32 bits, s [1] = 32 bits,

s [3] = 32 bits and s [3] = 32 bits.

- The plaintext block = 64 bits, then partitioned into 2

sub-blocks v0 = 32 bits and v1 = 32 bits. Then

initialize the process into a variable i = 1.

- The encryption process uses plaintext v0 sub-blocks

and keys with the formula v0 + = (((v1 Shl 4) XOR

(v1 Shr 5) + v1) XOR (sum + S [sum AND 3]). Use

plaintext sub-blocks v1 and key v1 + = ((((v0 Shl 4)

XOR (v0 Shr 5) + v0) XOR (sum + S [sum >> 11

AND 3]).

- The decryption process uses sub-block ciphertext v1-

and key with the formula v1- = (((v0 Shl 4) XOR (v0

Shr 5) + v0) XOR (sum + S [sum >> 11 AND 3])).

Use the plaintext sub-block v0- = (((v1 Shl 4) XOR

(v1 Shr 5) + v1) XOR (sum + S [sum AND 3])).

- Then add the process i = i + 1.

- If I have not reached 32 processes (32 rounds), then it

is repeated to step 5.

The Delta number used by XTEA is the same as the TEA,

which is 0x9E3779B9. In the description, the variable sum is

initialized with the value: -957401312 (0xC6EF3720) which is

obtained from the result of the DELTA number multiplied by

32 round = DELTA << 5.

Therefore, it is claimed that while keep using a very limited

calculation process, XTEA provides strong encryption and

decryption mechanisms adequate for mobile requirements

currently [6][7].

This has motivated us to implement XTEA into a simple

Secure Chat apps in Android environment in order to show its

powerful and simplicity in securing messages [8][9].

II. METHODE

Secure Chat Application is implemented in Android

environment. The basic concept of how it works is presented

as follows before sending, messages can be encrypted. Then

the chat is sent and received by the recipient's cellphone. In

order for it to be read by the recipient, the reverse process

must be carried out, namely if it is encrypted, it is decrypted

after which the new message can be read according to the

original message.

Fig 2. Main Use Case

In Figure 3.4, the Use Case illustrates that the user types a

message in the textbox which will later be taken by the

characters in it. Then the message will be received by the

designated number. Recipients can read messages normally if

they have the same application.

For more details, an explanation will be made at the next

stage of the process. Before the sender sends the message,

when you finish typing the message, the sender can encrypt

the message. A detailed explanation can be seen in Figure 3.4.

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

38

Fig 3. Use Case Send

In the next process, after the sender sends the message, the

application in the recipient will receive a notification in the

form of an incoming alert. When there is an incoming alert,

the message will be automatically stored in the android sms

container then the application will access this message when it

is decrypted in the inbox. For more details, see Figure 3.5.

Fig 4. Use case receive

Fig 5. Secure Chat interface

The main interface Secure Chat App in Android is

presented in figure 5 while figure 6 shows an incoming chat

from other party. In addition, figure 7 shows the actual data in

firebase.

Fig 6. Incoming secure message

Fig 7. Visualization of secure message in firebase

III. RESULT AND DISCUSSION

As mentioned in previous section, the Android apps enable

secure chat between two parties using XTEA to secure

chatting information. The case study is Besse chats with

Amini and Amini sent message “poltek upandang” to Besse.

In this section, we discuss in details how XTEA handles the

message given example.

a. XTEA Encryption

First, it search for subkey s [0] -s [3]. If it is known that the

key used for encryption is 16 bytes = 128 bits, namely:

Chiperkey: 1234567890123456. The initial stage is to change

the cipherkey to decimal form by looking at the ASCII table.

TABLE II

The cipherkey in ASCII

Chiperkey: 1234567890123456. The initial stage is to

change the cipherkey to decimal form by looking at the ASCII

table.The colored table is the decimal value of the ascii

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

39

cipherkey table: 1234567890123456.

The next step is to enter the decimal value of the cipher key

into the key randomization function by performing shift and

OR operations to generate subkeys. Enter the cipherkey into a

block of 16 bytes, where one randomization process requires 4

bytes of the cipherkey.

S [0] = ((49 AND 255) Shl 24) OR ((50 AND 255) Shl 16)

OR ((51 AND 255) Shl 8) OR ((52 AND 255)) S [0] = ((49

Shl 24) OR (50 Shl 16) OR (50 Shl 8) OR (52))

S [0] = 822083584 OR 3276800 OR 13056 OR 52

S [0] = 825373492

S [0] is a key generator used for the encryption and decryption

process in the XTEA algorithm, then it is repeated so that the

values S [0] to S [3] are obtained.

S [1] = ((53 AND 255) Shl 24) OR ((54 AND 255) Shl 16)

OR ((55 AND 255) Shl 8) OR ((56 AND 255))

S [1] = ((53 Shl 24) OR (54 Shl 16) OR (55 Shl 8) OR (56))

S [1] = 889192448 OR 3538944 OR 14080 OR 56

S [1] = 892745528

S [2] = ((57 AND 255) Shl 24) OR ((58 AND 255) Shl16) OR

((49 AND 255) Shl 8) OR ((50 AND 255))

S [2] = ((57 Shl 24) OR (58 Shl 16) OR (49 Shl 8) OR (50))

S [2] = 956301312 OR 3145728 OR 12544 OR 50

S [2] = 959459640

S [3] = ((51 AND 255) Shl 24) OR ((52 AND 255) Shl16) OR

((53 AND 255) Shl 8) OR ((54 AND 255))

S [3] = ((51 Shl 24) OR (52 Shl 16) OR (53 Shl 8) OR (54))

S [3] = 855638016 OR 3407872 OR 13568 OR 54

S [3] = 859059510

So that we get the key scheduling value (subkey), as follows:

S [0] = 825373492

S [1] = 892745528

S [2] = 959459640

S [3] = 859059510

This subkey is used for the encryption and decryption process

in the XTEA algorithm. The next stage is the calculation of

the encryption process. The encryption process in the XTEA

algorithm is done by taking each plaintext per 8 byte block

and breaking it into odd and even rounds. An example of

encryption in the XTEA algorithm, if it is known that the key

is 16 bytes long and plaintext will be used for encryption with

16 bytes.

Chiperkey : 1234567890123456

Plaintext : "poltek Upandang"

The initial stage is to change the plaintext into decimal form

by looking at the ASCII table
TABLE III

Plaintext into ASCII

p o L t e k space u

112 111 108 116 101 107 32 117

p a n d a n g space

112 97 110 100 97 110 103 32

Solve the plaintext per 8byte block. Each block is broken

down into odd rounds and even rounds, each of which has 4

byte characters.

TABLE IV

Plaintext into ASCII

p o l t e k space u

112 111 108 116 101 107 32 117

v0 = ((112 AND 255) Shl 24) OR ((111 AND 255) Shl 16)

OR ((108 AND 255) Shl 8) OR ((116 AND 255))

v0 = ((112 Shl 24) OR (111 Shl 16) OR (108 Shl 8) OR (116))

v0 = (1879048192 OR 7274496 OR 27648 OR 116)

v0 = 1886350452

v1 = ((101 AND 255) Shl 24) OR ((107 AND 255) Shl 16)

OR ((32 AND 255) Shl 8) OR ((117 AND 255))

v1 = ((101 Shl 24) OR (107 Shl 16) OR (32 Shl 8) OR (117))

v1 = (1694498816 OR 7012352 OR 8192 OR 117)

v1 = 1701519477

TABLE V

Plaintext into ASCII

p a n d a n g space

112 97 110 100 97 110 103 32

v0 = ((112 AND 255) Shl 24) OR ((97 AND 255) Shl 16) OR

((110 AND 255) Shl 8) OR ((100 AND 255))

v0 = ((112 Shl 24) OR (97 Shl 16) OR (110 Shl 8) OR (100))

v0 = (1879048192 OR 6356992 OR 28160 OR 100)

v0 = 1885433444

v1 = ((97 AND 255) Shl 24) OR ((110 AND 255) Shl 16) OR

((103 AND 255) Shl 8) OR ((32 AND 255))

v1 = ((97 Shl 24) OR (110 Shl 16) OR (103 Shl 8) OR (32))

v1 = (1627389952 OR 7208960 OR 26368 OR 32)

v1 = 1634625312

Initialize DELTA with the value 0x9E3779B9 (-1640531527

in integer) and 32 rounds (n). Calculate the value of v0 with

the initial value sum = 0. Calculations are performed using

integer values that have a limit of -2147483648 to

21447483647.

The value of S [0..3] is taken from the key generator that has

been obtained from the key generation process. The

calculation below is the calculation of the first sub-block from

the plaintext “poltek u”. The value of v1 is obtained from the

sub-block calculation for the word "poltek u", namely v1 =

1701519477

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

40

v0 + = (((v1 Shl 4) XOR (v1 Shr 5) + v1) XOR (sum + S [sum

AND 3])

v0 + = ((((1701519477 Shl 4) XOR (1701519477 Shr 5)

+1701519477) XOR (0 + S [0 AND 3])

v0 + = (((1454507856 XOR 53172483) + 1701519477) XOR

(0 + S [0])

v0 + = (((1454507856 XOR 53172483) + 1701519477) XOR

S [0])

v0 + = (1436114515 + 1701519477) XOR 825373492

v0 + = -1157333304 XOR 825373492

v0 + = -1976152580

= 1886350452 + (- 1976152580)

v0 = -89802128

Sum + = DELTA

Sum = 0 + (- 1640531527)

 = -1640531527

v1 + = (((v0 Shl 4) XOR (v0 Shr 5) + v0) XOR (sum + S [sum

>> 11 AND 3])

v1 + = (((-89802128 Shl 4) XOR (-89802128 Shr 5) + (-

89802128)) XOR (-1640531527 + S (-1640531527 Shr 11

AND 3])

v1 + = (((-1436834048 XOR (131411411) + (- 89802128))

XOR (-1640531527 + S [3])

v1 + = ((-1383167277) + (- 89802128)) XOR (-1640531527+

859059510)

v1 + = -1472969405 XOR -781472017

v1 + = 2036329388

= 1701519477 + 2036329388

v1 = -557118431

While the calculation below is the calculation of the second

sub-block from the plaintext "view"

v0 + = (((v1 Shl 4) XOR (v1 Shr 5) + v1) XOR (sum + S [sum

AND 3])

v0 + = (((1634625312 Shl 4) XOR (1634625312 Shr 5) +

1634625312) XOR (-1640531527 + S [-1640531527 AND 3])

v0 + = ((((384201216 XOR 51082041) + 1634625312) XOR

(-1640531527 + S [1])

v0 + = ((((384201216 XOR 51082041) + 1634625312) XOR

(-1640531527 + 892745528)

v0 + = ((((384201216 XOR 51082041) + 1634625312) XOR

(-747785999)

v0 + = (367853881 + 1634625312) XOR (-747785999)

v0 + = 2002479193 XOR -747785999

v0 + = -1539909464

= 1885433444 + -1539909464

v0 = -1228224047

Sum + = DELTA Sum = 0 + (- 1640531527) = -1640531527

v1 + = (((v0 Shl 4) XOR (v0 Shr 5) + v0) XOR (sum + S [sum

>> 11 AND 3])

v1 + = (((-1228224047 Shl 4) XOR (-1228224047 Shr 5) + (

1228224047)) XOR (-1640531527 + S [-1640531527 Shr 11

AND 3])

v1 + = (((1823251728 XOR (95835726) + (- 1228224047))

XOR (-1640531527 + S [3])

v1 + = ((1763363678) + (- 1228224047)) XOR (-

1640531527+ 859059510)

v1 + = 535139631 XOR -781472017

v1 + = -829539392

= 1634625312 + (-829539392)

v1 = 805085920

Repeat the calculation until 32 rounds so that the final values

of v0 and v1 are obtained, namely:

The first sub-block v0 = -539453652 v1 = -283483773

Second sub block v0 = -1857333815 v1 = 1111744780

Convert the final values v0 and v1 to ASCII characters by

shifting. The decimal value taken is in the form of a byte (8

bits) value.

The first sub block

v0 Shr 24 = -539453652 Shr 24 = -33

v0 Shr 16 = -539453652 Shr 16 = -40

v0 Shr 8 = -539453652 Shr 8 = -105

v0 Shr 0 = -539453652 Shr 0 = 44

v1 shr 24 = -283483773 Shr 24 = -17

v1 Shr 16 = -283483773 Shr 16 = 26

v1 Shr 8 = -283483773 Shr 8 = 97

v1 Shr 0 = -283483773 Shr 0 = -125

Second sub block

v0 Shr 24 = -1857333815 Shr 24 = -111

v0 Shr 16 = -1857333815 Shr 16 = 75

v0 Shr 8 = -1857333815 Shr 8 = 85

v0 Shr 0 = -1857333815 Shr 0 = -55

v1 shr 24 = 1111744780 Shr 24 = 66

v1 Shr 16 = 1111744780 Shr 16 = 67

v1 Shr 8 = 1111744780 Shr 8 = -31

v1 Shr 0 = 1111744780 Shr 0 = 12

The decimal value taken from the shift result above is then

converted to hex as in the table below

TABLE VI

Encryption result

Decimal

(byte)
-33 -40 -105 44

Binary 11011111 11011000 1—1-111 00101100

Character β ᴓ - ,

Decimal

(byte)
-17 26 97 -125

Binary 11101111 00011010 01100001 10000011

Character ï a ƒ

Decimal

(byte)
-11 75 85 -55

Binary 10010001 01001011 01010101 11001001

Character ʻ K U É

Decimal

(byte)
66 67 -31 12

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

41

Binary 01000010 01000011 11100001 00001100

Character B C á

From the encryption process above, it will obtain 8 characters

of ciphertext. So that the ciphertext derived fom plaintext

"upandang poltek" after encryption process is

"Β ᴓ—, ï a ƒ ʻI ÉBC á"

b. XTEA Decryption Process

The steps to change the encrypted data (ciphertext) in the

database to plaintext in the chat room are as follows:

The decryption process in the XTEA algorithm is carried out

by taking each ciphertext per 8 byte block and breaking it into

odd and even rounds. Repeat these steps for 32 rounds.

Example of decryption on the XTEA algorithm. For example

the Ciphertext of "upandang poltek": "ßØ—, ï aƒ'KUÉBCá".

As for the conversion of ciphertext characters into decimal

form as in the table below
TABLE VII

Chipertext into decimal

β ᴓ - , ï A ƒ

223 216 151 44 239 26 97 131

ʻ K U É B C Á

145 75 85 201 66 67 225 12

After that enter the same decryption key as the encryption key,

namely: 1234567890123456 so that the key or subkey

scheduling value can be obtained. Subkey S [0..3] is obtained

when performing the key generation process and is also used

to perform the decryption process. The value of the S subkey

[0..3] is:

S [0] = 825373492 S [2] = 959459640

S [1] = 892745528 S [3] = 859059510

Breaks the ciphertext per 8-byte block. Each block is broken

down into odd rounds and even rounds, each of which has 4

byte characters.

Breaks the ciphertext per 8-byte block. Each block is broken

down into odd rounds and even rounds, each of which has 4

byte characters.
TABLE VIII

Decryption process

Β ᴓ - , ï A ƒ

223 216 151 44 239 26 97 131

v0 = ((223 AND 255) Shl 24) OR ((216 AND 255) Shl 16)

OR ((151 AND 255) Shl 8) OR ((44 AND 255))

v0 = ((223 Shl 24) OR (216 Shl 16) OR (151 Shl 8) OR (44))

v0 = (-553648128 OR 14155776 OR 38656 OR 44)

v0 = -539453652

v1 = ((239 AND 255) Shl 24) OR ((26 AND 255) Shl 16) OR

((97 AND 255) Shl 8) OR ((131 AND 255))

v1 = ((239 Shl 24) OR (26 Shl 16) OR (97 Shl 8) OR (131))

v1 = (-285212672 OR 1703936 OR 24832 OR 131)

v1 = -283483773
TABLE IX

Decryption process

ʻ K U É B C á

145 75 85 201 66 67 225 12

v0 = ((145 AND 255) Shl 24) OR ((75 AND 255) Shl 16) OR

((85 AND 255) Shl 8) OR ((201 AND 255))

v0 = ((145 Shl 24) OR (75 Shl 16) OR (85 Shl 8) OR (201))

v0 = (-1862270976 OR 4915200 OR 21760 OR 201)

v0 = -1857333815

v1 = ((66 AND 255) Shl 24) OR ((67 AND 255) Shl 16) OR

((225 AND 255) Shl 8) OR ((12 AND 255))

v1 = ((66 Shl 24) OR (67 Shl 16) OR (225 Shl 8) OR (12))

v1 = (1107296256 OR 4390912 OR 57600 OR 12)

v1 = 1111744780

Then, initialize DELTA number with value 0x9E3779B (-

1640531527 in integer) and round (n) of 32 rounds. Calculate

the value of v0 and v1 as many as 32 rounds. Calculate the

value of v0 with the initial value sum = DELTA * round = -

957401312 (0xC6EF3720). Calculations are also performed

using an integer value that has a limit of -2147483648 to

2147483647. The calculation below is the calculation of the

first sub-block of the ciphertext "ßØ—, ï aƒ"

v1- = (((v0 Shl 4) XOR (v0 Shr 5) + v0) XOR (sum + S [sum

>> 11 AND 3)])

v1- = (((-539453652 Shl 4) XOR (-539453652 Shr 5) + (-

539453652)) XOR (-957401312 + S (-957401312 Shr 11

AND 3])

v1- = (((-41323840 XOR 117359801) + (- 539453652)) XOR

(-957401312 + S [2])

v1- = (((-76040583 + (- 539453652)) XOR (-957401312 +

959459634)

v1- = -615494235 XOR 2058322

v1- = -615569929 = -283483773 - (-615569929)

v1 = 332086156

Sum - = DELTA

Sum = (-957401312) - (-1640531527)

 = 683130215

v0- = (((v1 Shl 4) XOR (v1 Shr 5) + v1) XOR (sum + S [sum

AND 3]))

v0- = (((332086156 Shl 4) XOR (332086156 Shr 5) +

332086156) XOR (683130215 + S [683130215 AND 3]))

v0- = (((1018411200 XOR 10377692) + 332086156) XOR

(683130215 + S [3]))

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

42

v0- = ((((1009639708 + 332086156) XOR (683130215 +

859059510)

v0- = 1341725864 XOR 1542189725

v0- = 336784949

 = (- 539453652) - 336784949

v0 = -876238601

Whereas in the calculation below, is the second sub-block

calculation of the ciphertext "'KUÉBCá"

v1- = (((v0 Shl 4) XOR (v0 Shr 5) + v0) XOR (sum + S [sum

>> 11 AND 3)])

v1- = (((-1857333815 Shl 4) XOR (-1857333815 Shr 5) + (-

1857333815)) XOR (-957401312 + S (-957401312 Shr 11

AND 3])

v1- = (((347430032 XOR 76176046) + (- 1857333815)) XOR

(-957401312 + S [2])

v1- = ((((272565822 + (-1857333815)) XOR (-957401312 +

959459634)

v1- = -1584767993 XOR 2058322

v1- = -1584057259

= 1111744780 - (-1584057259) v1 = -1599165257

Sum - = DELTA

Sum = (-957401312) - (-1640531527)

= 683130215

v0- = (((v1 Shl 4) XOR (v1 Shr 5) + v1) XOR (sum + S [sum

AND 3]))

v0- = (((-1599165257 Shl 4) XOR (-1599165257 Shr 5) + (-

1599165257) XOR (683130215 + S [683130215 AND 3]))

v0- = ((((183159664 XOR 84243813) + (-1599165257) XOR

(683130215 + S [3]))

v0- = (((267370005 + (-1599165257) XOR (683130215 +

859059510)

v0- = -1331795252 XOR 1542189725

v0- = -344614831

= (-1857333815) - (-344614831)

v0 = -1512718984

Next, repeat the calculation until 32 rounds so that the final

values of v0 and v1 are obtained, namely:

The first sub-block v0 = 1886350452 v1 = 1701519477

Second sub block v0 = 1885433444 v1 = 1634625312

After that, change the integer value from the calculation result

to ASCII characters by moving it. The decimal value taken is

in the form of a byte (8 bits) value.

First sub block v0 Shr 24 = 1886350452 Shr 24 = 112v0 Shr

16 = 1886350452 Shr 16 = 111v0 Shr 8 = 1886350452 Shr 8 =

108v0 Shr 0 = 1886350452 Shr 0 = 116v1 shr 24 =

1701519477 Shr 24 = 101v1 Shr 16 = 1701519 107v1 Shr 8 =

1701519477 Shr 8 = 32v1 Shr 0 = 1701519477 Shr 0 = 117

Second subblock v0 Shr 24 = 1885433444 Shr 24 = 112v0 Shr

16 = 1885433444 Shr 16 = 97v0 Shr 8 = 1885433444 Shr 8 =

110v0 Shr 0 = 1885433444 Shr 0 = 100v1 shr 24 =

1634625312 Shr 24 = 97

v1 Shr 16 = 1634625312 Shr 16 = 110v1 Shr 8 = 1634625312

Shr 8 = 103v1 Shr 0 = 1634625312 Shr 0 = 32

The decimal value taken from the shift result above is then

converted to hex as in the table.

TABLE X

Decryption result

Decimal

(byte)
112 111 108 116

Binary 01110000 01101111 01101100 01110100

Character p o l t

Decimal

(byte)
101 107 32 117

Binary 01100101 0101011 00100000 01110101

Character e k space u

Decimal

(byte)
112 97 110 100

Binary 01110000 01100001 01101110 01100100

Character p a n d

Decimal

(byte)
97 110 103 32

Binary 01100001 01101110 01100111 00100000

Character a n g space

Finally the plaintext derived from Ciphertext: "ßØ—, ï

aƒ'KUÉBCá" is "poltek upandang".

IV. CONCLUSION

We have introduced an implementation of XTEA

cryptography in the form of Secure Chat application in

Android environment. A simple chat between two parties also

presented followed by in details calculation procedure of

XTEA for both encryption and decryption process.

This approach is useful for students to learn mathematical

procedures behind XTA cryptography which may lead to

applying more complicated algorithm in different application.

V. ACKNOWLEDGMENT

Gratefully acknowledge the contributions to all authors.

Also, Politeknik Negeri Ujung Pandang and all support.

VI. REFERENCES

[1.] D. Wheeler and R. Needham, TEA, a Tiny Encryption

Algorithm (1994)

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 3, ISSUE 2, DECEMBER-2020, 36-43
EISSN 2654-802X

43

http://www.ftp.cl.cam.ac.uk/ftp/papers/ djw-rmn/djw-

rmn-tea.html

[2.] D. Wheeler and R. Needham, XTEA (eXtended TEA),

Technical report (1997)

[3.] Y.Ko, H. Seokhie, W.Lee, S.Lee, and JS Kang. "Related

key differential attacks on 27 rounds of XTEA and full-

round GOST." In International Workshop on Fast

Software Encryption, pp. 299-316. Springer, Berlin,

Heidelberg, (2004).

[4.] G.N. Khan, X. Yu, and F.Yuan. "A novel XTEA based

authentication protocol for RFID systems." In 2011

XXXth URSI General Assembly and Scientific

Symposium, pp. 1-4. IEEE, (2011).

[5.] J.P. Kaps, "Chai-tea, cryptographic hardware

implementations of xtea." In International Conference on

Cryptology in India, pp. 363-375. Springer, Berlin,

Heidelberg, (2008).

[6.] M.H.AlMeer, "FPGA implementation of a hardware

XTEA light encryption engine in co-design computing

systems." In 2017 Seventh International Conference on

Innovative Computing Technology (INTECH), pp. 26-

30. IEEE, (2017).

[7.] P.Israsena, "On XTEA-based encryption/ authentication

core for wireless pervasive communication." In 2006

International Symposium on Communications and

Information Technologies, pp. 59-62. IEEE, (2006).

[8.] T.Isobe, and K.Shibutani. "Security analysis of the

lightweight block ciphers XTEA, LED and Piccolo." In

Australasian Conference on Information Security and

Privacy, pp. 71-86. Springer, Berlin, Heidelberg, (2012).

[9.] S.Maitra, and K.Yelamarthi. "Rapidly deployable IoT

architecture with data security: Implementation and

experimental evaluation." Sensors 19, no. 11 (2019.

