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Abstract-- A good Super Resolution (SR) algorithm is one 

of the key successes to filter frequency that creates noise to 

a picture. Previous research that has published was 

concluded the Camera SR is the best algorithm to filter this 

frequency based on their Peak Signal to Noise Ratio (PSNR) 

and Mean Square Error (MSE) results. However, the 

current approach to achieving high resolution have not 

yielded enough signal to filter unwanted pixel. Hence, there 

is a need to find a better approach to those leads to higher 

resolution through lower noise reduction. To fulfill this 

need, this thesis proposed to utilize two proven SR 

algorithms; Gaussian Denoising and Kernel Blurring. This 

thesis will not only be obtaining these two existing 

algorithms in a stand-alone form but hence the combination 

of them (two combinations) will also be obtained as the new 

possible algorithms that can be utilized to filter frequency 

that create noise to a picture. To reach the research 

objective, the method that will be used is by training a total 

of four algorithms one by one to a public data set that 

contains 200 pictures and gets the PSNR and MSE results 

of each algorithm. Comprehensive experimental results 

show that all those four SR algorithms outperform previous 

SR algorithms in commonly used data set with variously 

higher PSNR by 21% and lower MSE by 5%. 
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I.  INTRODUCTION 

Many jobs require people to use High Resolution 

(HR) images. However, not all image capture media 

can get high-resolution images. Many image capture 

media still produce Low Resolution (LR) images. 

One of the causes of the resulting image still has a 

low resolution is due to noise interference that occurs 

in the resulting image [1]. The noise disturbance 

occurs due to interference with high-frequency 

signals when someone takes pictures. A good Super 

Resolution (SR) algorithm is one of the keys to 

success in filtering frequencies that can cause noise 

in the image [2]. 

There are several ways to run the SR algorithm, 

from the most frequently researched by researchers, 

namely by sampling the noise and then doing a 

network projection on the image. In a study 

conducted by Adrian Bullat et al regarding SR for 

facial images, they first used a simple bilinear 

downsampling method which they called High-to-

Low Generative Adversarial Network (GAN) to 

reduce the quality of their facial images. Then that 

the output from this network is used to train the data 

to be Low-to High for their SR method by pairing 

low-resolution images with high-resolution images. 

The results of this study they were able to get a Peak 

Signal Noise to Ratio (PSNR) value of 19.30 dB [3]. 

In another study that still uses network projections 

on images conducted by Muhammad Haris et al 

using the opposite idea by using sampling which is 

first iterative-up and then down-sampling which they 

call Deep Back-Projection Network (DBPN). The 

results of this study they were able to get a PSNR 

value of 25.50 dB [4], another study was also carried 

out by Yulun Zhang et al using the Urban100 data set 

and a method they called a Residual in Residual 

(RIR) to form a very deep network. The results of 

this study they were able to get a PSNR value of 

29.04 dB [5]. 

 Based on the results of the latest research on the 
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SR algorithm to filter frequencies that cause noise in 

the image, it was concluded that Camera SR is the 

best algorithm currently for filtering these 

frequencies, when viewed from the PSNR and Mean 

Square Error (MSE) values obtained. In this study, 

the average value obtained by Camera SR for PSNR 

is 30.09 dB and MSE is 1112.32 [6]. However, if you 

look at the PSNR results for every single data, it turns 

out that there is still a single data that gets a PSNR 

value below 30 dB. While the requirements for an SR 

algorithm to be able to filter noise optimally if it has 

a PSNR value above 30 dB. 

In addition to several SR algorithms described 

above, there are 2 algorithms that theoretically and 

research have proven can be used to filter frequencies 

that can cause noise in the image. The two proven SR 

algorithms are Gaussian Denoising [7 - 13] and 

Kernel Blurring [14 - 20]. The latest research 

conducted by Ali Awad in 2019 is to use the 

Gaussian Denoising method, which is divided into 2 

stages, namely first for images affected by noise to 

be smoothed by eliminating noises that have certain 

information values that affect the information value 

of their neighbors. Then after that, the remaining 

noise will be removed gradually. In the process, the 

two stages are divided into 3 processes, the first 

process is to divide the image into image patches 

(image patches), the second process divides the 

image value into 2 types, namely the type with noise 

value and the type with information value. The third 

is that the pixels with noise values will be removed. 

The results of this study obtained a PSNR value of 

33.16 dB [21]. Meanwhile, Wenming Yang et al in 

2017 conducted a study using the Kernel Regression 

algorithm, namely by linking the low-resolution 

coding coefficients with high-resolution coding to 

retrieve and map the non-linear inner relationships 

between them [22]. Therefore, the two algorithms 

that already exist and are proven to be able to filter 

frequencies that cause noise can be optimized for 

image processing, especially SR in the future.  

II.  METHOD 

The following is a research flow process regarding 

the use of the SR algorithm with several indicators 

which can be seen in Fig 1 below: 

 
Fig. 1. Research Flow Process 

The explanation of Fig 1 regarding the research flow 

process to be carried out is first is study some pieces 

of literature that were taken from trusted journal 

websites such as from IEEE, Science direct, and 

others, then the literature is reviewed as a basis for 

finding a research topic. Secondly is data collection 

is taken from image data before being manipulated. 

After that, the third is the data is checked to 

determine whether the data can be used as a research 

dataset. The data to be taken is public image data 

before image manipulation is carried out. The fourth 

one is the training process that will be carried out 

using the Gaussian Denoising, Kernel Blurring, 

Gaussian Denoising + Kernel Blurring, and Kernel 

Blurring + Gaussian Denoising algorithms to obtain 

Training Data, which is an image of the dataset that 

has been manipulated by the four algorithms. Finally, 

the fifth or the last process is checked using 

Parameter Measurement to find the best PSNR and 

MSE. 

A.  Data Collection 

The following is the flow process of data 

collection methods that will be carried out for 

matching image data with previous research so that 
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the results can later be compared according to the 

measurement parameters that have been set. 

 
Fig. 2. Data Collection 

As in Fig 2 where the image data is taken from the 

public City100 dataset, with address 

https://github.com/ngchc/CameraSR/tree/master/Cit

y100, then the data is downloaded for a total of 10 

GB and after that, it is entered into an excel table with 

the given 2 labels. The Figure 3 is an example of 

processed dataset pictures. 

 
Fig. 3. Picture dataset example 

B.  Training Model 

The data training model built is an image 

processing model where later the image dataset will 

be directly processed using 4 types of SR algorithms, 

namely Gaussian Denoising, Kernel Blurring, 

Gaussian Denoising + Kernel Blurring, and Kernel 

Blurring + Gaussian Denoising. 

 
Fig. 4. Training model 

C.  Measurement 

At this stage is to take measurements for each 

experiment carried out to see, compare and decide 

which SR algorithm is better. Measurements in this 

study using MSE and PSNR. 

Mean Square Error (MSE) 

MSE is the mean squared error between the actual 

value and the forecast value. MSE is also a good 

parameter to measure the similarity of 2 images. 

Suppose we have 2 images h and f with dimensions 

that are MxN, then the way to calculate the MSE is 

to subtract the value of the image data before being 

manipulated with the image data after being 

manipulated and the results are squared (squared) 

then summed as a whole and divide by the amount of 

existing data. 

 (1) 

Peak Signal To Noise Ratio (PSNR) 

PSNR is the ratio of the maximum value of the 

signal measured by the amount of noise that affects 
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the signal. PSNR is measured in dB units. PSNR is 

used to compare the image quality before and after 

the message is inserted (manipulated). 

     (2) 

III.   RESULT  AND DISCUSSION 

A.  Gaussian Denoising Training 

At this stage, the image data before being 

manipulated will be trained using the Gaussian 

Denoising algorithm to form image training data 

after being manipulated using the Gaussian 

Denoising algorithm so that the image data will be 

obtained as shown in Figure 5. 

 
Fig. 5. Picture dataset after denoising 

Based on the test results obtained optimal results 

when the standard deviation (σ) of the Gaussian 

Denoising algorithm is 25. 

B.  Kernel Blurring Training 

At this stage, the image data before being 

manipulated will be trained using the Kernel 

Blurring algorithm to form image training data after 

being manipulated using the Kernel Blurring 

algorithm so that image training data will be obtained 

as shown in Figure 6. 

 
Fig. 6. Picture dataset after blurring 

Based on the test results obtained optimal results 

when the kernel matrix (h(x,y)) used in the 

convolution process of the Kernel Blurring algorithm 

is 3 X 3 (h(3,3)). 

C.  Denoising + Blurring Training 

At this stage, the image data before being 

manipulated will be trained using the Gaussian 

Denoising algorithm first so that image training data 

is formed after being manipulated using the Gaussian 

Denoising algorithm, after that the manipulated 

image will be retrained using the Kernel Blurring 

algorithm so that image training data will be obtained 

after combined between Gaussian Denoising 

algorithm with Kernel Blurring as shown in Figure 7. 

D.  Blurring + Denoising Training 

At this stage, the image data before being 

manipulated will be trained using the Kernel 

Blurring algorithm first so that image training data is 

formed after being manipulated using the Kernel 

Blurring algorithm, after that the manipulated image 

will be retrained using the Gaussian Denoising 
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algorithm so that image training data will be obtained 

after combined between Kernel Blurring algorithm 

with Gaussian Denoising as shown in Figure 8. 

Figure 9 is the results of the MSE test where the 

lowest MSE value is the result of training data using 

the Kernel Blurring algorithm. 

Figure 10 is the results of the PSNR test where the 

highest PSNR value is the result of training data 

using the Kernel Blurring algorithm. 

Table 1 is a comparison table of experimental 

results for several MSE and PSNR measurement 

parameters. 

 

 
Fig. 7. Picture dataset after denoising + blurring 

 

 
Fig. 8. Picture dataset after blurring + denoising 

 

 
Fig. 9. MSE test result 
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FIG. 10. PSNR TEST RESULT 

 

 

TABLE I 

MSE and PSNR comparison 

 

IV.  CONCLUSION 

The training model in this study uses 2 

measurement parameters, namely PSNR and MSE. 

The results obtained are that from the PSNR and 

MSE values, the Kernel Blurring algorithm is better 

than the Camera SR algorithm with a difference of 

21% for PSNR and -5% for MSE. The test results for 

Kernel Blurring obtained PSNR values of 36.34 dB 

and MSE of 1,058.22 while Camera SR itself 

obtained PSNR values of 30.09 dB and MSE of 

1,112.32. However, when compared visually, the 

image produced by Kernel Blurring is blurrier than 

the original image. 
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