
JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 6, ISSUE 1, JUNE-2023
EISSN 2654-802X

39

IMPLEMENTATION OF COLLISION AVOIDANCE
SYSTEM ALGORITHM IN NPC GAME 3D

Gugah Alwan Hamanako1, Adi Sucipto2

1,2Sekolah Tinggi Multi Media “MMTC” Yogyakarta
1alwanhamanako@gmail.com, 2adi.sucipto@mmtc.ac.id

Abstract--Nowadays, with the rapid development of

technology, we are given the convenience of finding
entertainment such as games. Now game can be quickly
run on various media, one of them is on a smartphone.
Most smartphones' Operating Systems (OS) are Android
and IOS, and currently the most popular is the Android.
This research aims to create an Artificial Intelligence of
Non-Player Character (NPC) that can avoid every
obstacle using the Collision Avoidance System algorithm.
The result of the research is an Android game app that
applies the Collision Avoidance System that can make AI
NPC avoid obstacles. The application of the algorithm to
the NPC is made in 3 stages, namely, designing by
making a flowchart of the algorithm, then writing a
program from the Collision Avoidance System, and
finally, testing the AI NPC. The test is carried out by
comparing the reactions of NPC 1 and NPC 2 in passing
through obstacles when on different paths by being
carried out jointly between NPC. Based on the tests on
AI NPC, NPC managed to avoid obstacles in front of
them and the players, and it is almost 93% successful.

Keywords: Collision Avoidance System; Obstacle;

Games.

I. INTRODUCTION

With the rapid development of technology
today, we are given the convenience of finding
entertainment, such as listening to songs,
watching movies, and downloading games via the
internet. Game is a form of entertainment often
used as a mind refresher from fatigue caused by
our activities and routines [1]. Nowadays, the
game can run from various platforms. One of the
most popular media is the smartphone. Many
smartphones use Android and IOS as Operating
Systems. The most popular OS for a smartphone
now is Android. Android is a mobile Operating
System based on Linux that covers operating
systems, middleware, and application [2].

Currently, there are several games of balap
karung (sack race), such as “Game17an” and
“Kucing dalam Karung”. “Game17an” is a games

consisting of several games that are usually played
to celebrate Indonesia's Independence Day
(commonly known as Agustusan). One of the
games in "Game17an" is Game "Balap Karung".
This game asks the player to wear sacks so it
covers their chest and lower body, then they race
with other players. In "Game17an" player uses the
left and right buttons to change the track of the
player in the game. This game's goal is to avoid
the 'enemy' and reach the finish line. The game
"Kucing dalam Karung" uses the same way to
play as "Balap Karung" but the difference in this
game uses a cat as the character. Players have to
press the screen to make the character jump and
press the screen again after the character landing
on the ground so the character does not fall. The
game will finish if the player is too late to reach
the finish line.

Many games of balap karung use simple game
mechanics, and among of them do not have NPC
as an enemy. "Game 17an" and "Kucing dalam
Karung" has the NPC in its game. However, in
these games, the NPC is just an obstacle that
inhibits the player from finishing the game, and
the NPC does not have the behavior to avoid
another player. Meanwhile, in the game "Kucing
dalam Karung", the NPC can only speed-racing
with the player and cannot move to another track,
and neither can avoid the player.

A Non-Player Character or known as NPC is a
character in a computer game that the player does
not control. NPCs can be intelligent agents created
by embedding Artificial Intelligence (AI) having
human-like behavior, such as changing their
strategy or mindset in response to the opponent's
actions [3]. NPCs can have the ability to make
movements or interactions automatically by the
computer and are not controlled by the player [4].

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 6, ISSUE 1, JUNE-2023
EISSN 2654-802X

40

There are several algorithms that can be used
for NPCs in racing or pathfinding games, namely
(1) A* algorithm, which is one of the best
algorithms most commonly used in pathfinding,
especially for AI in games [5],[6]. The A*
algorithm always checks all unexplored locations.
When it is explored, it will record all of its
neighboring locations for further exploration up to
its objective point [7], (2) Dijkstra's algorithm,
which is the most frequently used algorithm in
finding the shortest route [8], is simple to use by
using simple nodes on an uncomplicated road
network [9], and (3) The Collision Avoidance
System algorithm is an algorithm that functions to
carry out an interaction with the nearest obstacle
and then avoids it, which is inserted into the Non-
Player Character (NPC) [10].

One of the algorithms that can be embedded in
the NPC is the Collision Avoidance System. This
algorithm functions to carry out an interaction
with the closes obstacles, then avoid them. Milak
conducted similar research in 2019 and applied
Artificial Intelligence to Non-Player Characters
using the Collision Avoidance System algorithm
and Random Number Generator in the 2D game
"Balap Egrang". In this research, the Collision
Avoidance System algorithm is used by NPC to
avoid obstacles. This game format is 2D and uses
side-scrolling to play the game [11].

So far, scientific articles show that no sack race
game implements the Collision Avoidance System
algorithm on NPCs. The 3D game "Balap
Karung" in this research implements this
algorithm. The NPC is made so that it can have
artificial intelligence that can avoid obstacles as
well as player characters. This AI. can provide
challenges for players in completing the game.

II. METHOD

A. Life Cycle Development Stage

There are three stages involved in the creation
of this production work, namely the pre-
production stage, the production stage and the
post-production stage. The creation process begins
with the search for ideas, concepts and data which
will then be used as mechanics in the game to be
produced. The development of these ideas and
data are carried out by conducting research on
sack race game and the rules contained in this

traditional game.
From the results of this research then it is

developed into a game mechanic and documented
into the creation of a Game Design Document
which is a document from the initial concept to
the design in making games “Balap Karung”. All
the concepts that are made in the Game Design
Document will then be discussed with team
members in the production process. At this stage
you can find out the level of difficulty in the
production process so that if there is a game
design concept, whether it comes from the
mechanics, visuals and programmers; that are not
appropriate, it can be reduced.

At the production stage, work has entered the
respective job description sections. In accordance
with what is discussed in the initial design stage.
At this stage the game mechanics and features
discussed in the previous stage are made by
making a flowchart of the NPC algorithm, then
starting to be converted into program form (Fig.
1).

Fig. 1. Flowchart Collision Avoidance System

If there are changes to mechanics or features
that are inappropriate for the game, discussions
will be held with the game designer. Every game
mechanic program, NPC features and algorithms
are made on Unity and Visual studio software.

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 6, ISSUE 1, JUNE-2023
EISSN 2654-802X

41

Then the post-production stage, at this stage
testing of the mechanics and games that are made
is based on the design that was carried out in the
previous stage. The process includes testing the
black box NPC game independently to check
whether the NPCs made are in accordance with
those in the Game Design Document, conducting
testing on individuals or groups to find out
reviews and evaluations of the strengths and
weaknesses of NPCs, revising the evaluations that
are carried out in the previous stages, and
publishing the final results of the games that are
carried out in accordance with the previous stages.
Targeting ages 13 and over, the end result of this
game production works can be accessed through
the game sharing website, itch.io via the link
https://ghamanako.itch.io/balap-karung.

B. Collision Avoidance System Algorithm

Fig. 2 shows pseudocode algorithm collision
avoidance system [11]. The stages of the Collision
Avoidance System algorithm in that figure are as
follows:
1. The algorithm will detect obstacles or obstacles

that are ahead.
2. Two possible obstacles that must be passed
3. The obstacle is in front of the right, so the

algorithm will read and dodge to the left.
4. The obstacle is in front of the left, so the

algorithm will read and dodge to the right.

Fig. 2. Pseudocode Algorithm Collision Avoidance System

[11]

This algorithm uses Collision Detection, which
is the process of detecting collisions between two
objects. Collision Detection is also useful for
determining the position of one object with
another so that no objects penetrate one another
[10].

III. RESULT AND DISCUSSION

The "Balap Karung" game is a 3D mobile game
that can be categorized into the casual genre.
Furthermore, it carries the theme of a traditional
Indonesian game often played during Indonesia’s
Independence Day celebrations, namely Balap
Karung with the game mechanics modified to suit
the casual game genre but not off the mark from
the traditional game Balap Karung itself.

There are three playable characters with three
lanes in the game. The players can switch to any
lane when confronted with an obstacle or get
ahead of the enemy. The difference in the levels
played is in the level of enemy difficulty, the QTE
(Quick Time Elapse) area, which is getting
smaller. The obstacles must be confronted, and the
distance to the finish the line must be achieved,
and players can also share player wins after the
game on social media.

A. NPC Programming

This program works for NPCs to avoid
obstacles and players (Fig. 3). The Collision
Avoidance System Algorithm program, located in
the void update() section, will execute the
program per frame, which will continue to execute
program commands as long as the program or
game is running.

transform.Translate(Vector3.forward*Time.deltaTime *

speed);
Ray CenterRay = new Ray(transform.position,

transform.forward);
Ray LeftRay = new Ray(transform.position -

(transform.right * 3), transform.forward);
Ray RightRay = new Ray(transform.position +

(transform.right * 3), transform.forward);
if (Physics.Raycast(CenterRay, out hit, range, layer)) {
 Debug.Log(hit.point.x);
 _isObstacle = true;
if (hit.point.x >= 2.0f) {

 transform.position += Vector3.left * LaneDistance;
 Debug.Log("kiri");

} else if (hit.point.x <= -2.0f) {
 transform.position += Vector3.right * LaneDistance;
 Debug.Log("kanan");

}
Fig. 3. List Program

The NPC will move to avoid obstacles if there

is an obstacle in front and the obstacle is in the

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 6, ISSUE 1, JUNE-2023
EISSN 2654-802X

42

specified position. Because this game has three
lanes, the obstacle position is determined in
advance in the program, so the results of
switching lanes from the NPC are optimal. The
position of the obstacle are taken in the program
so it can run is the x-axis position of the obstacle.
Also, to focus more on the obstacle, the condition
of the layer where the obstacle is located is added
so that it only takes the position of the obstacle
object in the specified layer. It also applies to
avoid players. Furthermore, in this void update,
there are also three conditional functions for NPCs
to be able to move positions, such as moving to
the left lane, moving to the right lane (Fig. 4), and
moving to the right or left lane.

B. Validation Test

This program works for NPCs to avoid
obstacles and players (Fig. 3). The Collision
Avoidance System Algorithm program, located in
the void update() section, will execute the
program per frame, which will continue to execute
program commands as long as the program or
game is running.

Fig. 4. NPC success avoid an obstacle

Fig. 5. NPC success avoid an abstacle to left lane

The results from the Table I – III carried out
ten experiments at various levels in the game to
test the Collision Avoidance System algorithm
that was applied to the two NPCs, which initially
had their paths. The results of the experiment have
a success percentage of 93% out of a total of 30

trials. The algorithm goes well in avoiding the
obstacles in front of it. However, several
experimental results show that the NPC not
avoiding and instead crashing into obstacles,
namely when NPC 1 and NPC 2 are on the same
path. Then one of the NPCs changed lanes, but
when they moved lanes in front of them, there was
an obstacle, causing the NPC to glitch by
changing positions quickly because the path the
NPC was moving to was blocked by NPC 2, so
that NPC 1 hit an obstacle (Fig. 6). It happens
because the algorithm uses distance to detect
colliders, so there are obstacles if the distance is
too close when moving from one lane to the next.
The algorithm does not read the collider obstacle.

TABLE I

Validation Test of Level 1
Test NPC

(1)
State Descrip-

tion
NPC
(2)

State Descrip-
tion

1.1 Left
lane

Move to
middle

lane

Success
avoid the
obstacle

Right
lane

Move to
middle

lane

Success
avoid the
obstacle

1.2 Middle
lane

Move to
right lane

Success
avoid the
obstacle

Middl
e lane

move to
right lane

Success
avoid the
obstacle

1.3 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

success
avoid
NPC

1.4 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middl
e lane

move to
right lane

Success
avoid the
obstacle

1.5 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

success
avoid
NPC

1.6 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middl
e lane

move to
right lane

Success
avoid the
obstacle

1.7 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

1.8 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middl
e lane

move to
right lane

success
avoid
NPC

1.9 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

1.10 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middl
e lane

move to
right lane

Success
avoid the
obstacle

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 6, ISSUE 1, JUNE-2023
EISSN 2654-802X

43

TABLE II
Validation Test of Level 2

Test NPC
(1)

State Descrip-
tion

NPC
(2)

State Descrip-
tion

2.1 Left
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

2.2 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

2.3 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

2.4 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middle
lane

crush to
obstacle

fail avoid
obstacle

2.5 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

2.6 Middle
lane

move to
right lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

2.7 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

2.8 Middle
lane

move to
right lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

2.9 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

2.10 Middle
lane

move to
left lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

Fig. 6. NPC hit an obstacle

TABLE III
Validation Test of Level 3

Test NPC
(1)

State Descrip-
tion

NPC
(2)

State Descrip-
tion

3.1 Left
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

3.2 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

3.3 Right
lane

crush to
obstacle

fail avoid
obstacle

Right
lane

crush to
obstacle

fail avoid
obstacle

3.4 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

3.5 Middle
lane

move to
left lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

3.6 Left
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

3.7 Middle
lane

move to
right lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

success
avoid
NPC

3.8 Right
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

success
avoid
NPC

3.9 Middle
lane

move to
left lane

Success
avoid the
obstacle

Middle
lane

move to
right lane

Success
avoid the
obstacle

3.10 Left
lane

move to
middle

lane

Success
avoid the
obstacle

Right
lane

move to
middle

lane

Success
avoid the
obstacle

IV. CONCLUSION

Based on the results of the Collision Avoidance
System algorithm research on NPC that is carried
out, it can be concluded that the game "Balap
Karung" is successfully produced which can run
on a mobile platform. It provides a new
experience in games with the casual action genre
with the theme of traditional Indonesian games,
namely sack race.

Furthermore, the successful implementation of
the Collision Avoidance System algorithm on
NPCs to avoid obstacles, the test results of the
Collision Avoidance System algorithm applied to
NPCs have succeeded in making NPCs avoid
existing obstacles as well as players in the game
"Balap Karung". The test was carried out by
comparing the reactions of NPC 1 and NPC 2 in
passing an obstacle on different paths by carrying
it out together between NPCs.

The game "Balap Karung" is successfully

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 6, ISSUE 1, JUNE-2023
EISSN 2654-802X

44

produced, but some players still find some bugs
that appear in the game, so some improvements
are needed in this game. It is also necessary to
reduce the NPC's ability to avoid obstacles
because when the game was tested by several
people, it was found that the NPS was still quite
difficult to beat

V. REFERENCES

[1] M. Ridhoi, Cara Mudah Membuat Game Edukasi
Dengan Contruct 2. Maskha, 2018. Accessed on 11
Juni 2022. [Daring]. Available in
http://archive.org/details/CARAMUDAHMEMBUAT
GAMEEDUKASIDenganContruct2.

[2] I. Y. Supardi, Semua Bisa Menjadi Programmer
Android Case study. Elex Media Komputindo, 2014.
[Daring]. Available in
https://books.google.co.id/books?id=ouVyDwAAQBA
J.

[3] I. Umarov and M. Mozgovoy, “Believable and
Effective AI Agents in Virtual Worlds: Current State
and Future Perspectives,” Int. J. Gaming Comput.-
Mediat. Simul., vol. 4, no. 2, pp. 37–59, Apr 2012, doi:
10.4018/jgcms.2012040103.

[4] C. W. Reynolds and others, “Steering behaviors for
autonomous characters,” in Game developers
conference, 1999, vol. 1999, pp. 763–782.

[5] A. Candra, M. A. Budiman, and R. I. Pohan,
“Application of A-Star Algorithm on Pathfinding
Game,” in Journal of Physics: Conference Series,
2021, vol. 1898, no. 1, pp. 012047.

[6] E. B. Aydoğan and Y. Atay, “Unity Based A*
Algorithm Used in Shortest Path Finding Problem for
Helicopters,” in 2021 International Conference on
Control, Automation and Diagnosis (ICCAD), 2021,
pp. 1–5.

[7] X. Cui dan H. Shi, “A*-based Pathfinding in Modern
Computer Games,” IJCSNS, vol. 11, no. 1, pp. 125,
2011.

[8] Risald, A. E. Mirino, and Suyoto, “Best routes
selection using Dijkstra and Floyd-Warshall
algorithm,” in 2017 11th International Conference on
Information & Communication Technology and System
(ICTS), 2017, pp. 155–158. doi:
10.1109/ICTS.2017.8265662.

[9] X. Cao, X. Li, X. Wei, S. Li, M. Huang, and D. Li,
“Dynamic programming of emergency evacuation path
based on Dijkstra-ACO hybrid algorithm,”
子与信息学电 报, vol. 42, no. 6, pp. 1502–1509, 2020.

[10] F. Bevilacqua, “Understanding steering behaviors,”
Envotatotuts Envato Pty Ltd, 2012.

[11] A. S. Milak, E. W. Hidayat, and A. P. Aldya,
“Penerapan Artificial Intelligence pada Non Player
Character Menggunakan Algoritma Collision
Avoidance System dan Random Number Generator
pada Game 2D ‘Balap Egrang,’” J. Teknol. Inf. dan

Ilmu Komput., vol. 7, no. 5, Art. no. 5, Okt 2020, doi:
10.25126/jtiik.2020711816.

