The Clustering of Ranting Muhammadiyah Using the K-MODES Algorithm
DOI:
https://doi.org/10.56873/jitu.8.2.6066Keywords:
Clustering, Clusters, Elbow method, K-Modes, Sub-branch or Ranting MuhammadiyahAbstract
Research on Muhammadiyah often focuses on its preaching models, responses to various conditions, and strategies in proselytization or resource management, but there is limited exploration of the Muhammadiyah organization itself. Specifically, the condition of Pimpinan Ranting Muhammadiyah (The Leader of Muhammadiyah Sub-Branch or PRM) as the lowest organizational structure, is seldom addressed. Currently, the LPCR utilizes SICARA to categorize organizations based on scores reflecting routine activities, yet it does not map these organizations based on similar potential. Thus, there is a need for a method to group these organizations based on a condition mapping to facilitate targeted revitalization efforts. This study aims to cluster PRM based on the Branch and Sub-branch Information System (Sistem Informasi Cabang dan Ranting or SICARA) questionnaire responses. Given that the SICARA questionnaire data is categorical, the K-MODES method was chosen for clustering. The optimal number of clusters was determined using the elbow method. The resulting clusters, derived using the elbow method, there are eight clusters, each exhibiting distinct characteristics.
References
[1] D. K. Alka, “Alam Digital Muhammadiyah Dakwah Islam Washatiyah Berkemajuan,” MAARIF, 2019, vol. 14, no. 2. doi: 10.47651/mrf.v14i2.64.
[2] N. A. Prabowo, P. Hendradi, and B. P. U. Mageklang, “Kerangka Model Aplikasi e-dakwah Pengembangan Kaderisasi pada Pengurus Daerah Muhammadiyah Kota Magelang,” Indonesian Journal of Networking and Security (IJNS), 2019, vol. 8, no. 3. doi: 10.55181/ijns.v8i3.1603.
[3] Z. N. Rohman, “Manfaat media dalam model dakwah kultural,” Tarbawi Khatulistiwa: Jurnal Pendidikan Islam, 2022, vol. 8, no. 1. doi: 10.29406/tbw.v8i1.3712.
[4] A. Syarofah, Y. Ichsan, P. Rahman, H. Kusumaningrum, and S. Nafiah, “Dakwah Muhammadiyah di Era Digital bagi Kalangan Milenial,” Dakwah: Jurnal Kajian Dakwah dan Kemasyarakatan, 2021, vol. 25, no. 1. doi: 10.15408/dakwah.v25i1.21774.
[5] R. Vebrynda, “Pemberdayaan media baru dalam dakwah di Pimpinan Daerah Muhammadiyah (PDM) Bantul,” Prosiding Seminar Nasional Program Pengabdian Masyarakat, 2020. doi: 10.18196/ppm.310.548.
[6] F. Amar and E. Setiawan, “Model Dakwah Mu-hammadiyah di Daerah Terpencil, Terluar dan Terdalam: Studi Kasus di Kalimantan Tengah,” Prosiding Kolokium Doktor dan Seminar Hasil Penelitian Hibah, 2019, vol. 1, no. 1, p. 538–552. doi: 10.22236/psd/11538-55294.
[7] A. Arsam, “Manajemen dan Strategi Dakwah Muhammadiyah Kota Semarang,” Komunika: Jurnal Dakwah dan Komunikasi, 2010, vol. 4, no. 2. doi: 10.24090/komunika.v4i2.150.
[8] F. Riady, “Pola Dakwah Muhammadiyah di Kota Banjarmasin,” Al-Mishbah: Jurnal Ilmu Dakwah dan Komunikasi, 2014, vol. 10, no. 1.
[9] H. R. Hakim, “Dakwah Digital Pimpinan Pusat Muhammadiyah: Studi Kasus Televisi Streaming Tvmu.tv,” Magister Thesis. Bandung: UIN Sunan Gunung Djati, 2021. http://digilib.uinsgd.ac.id/38948/.
[10] M. Ali, “Membedah Tujuan Pendidikan Muham-madiyah,” Profetika: Jurnal Studi Islam, 2016, vol. 17, no. 1. doi: 10.23917/profetika.v17i01.2099.
[11] I. Halim, “KKN-PPM Pembinaan dan Pem-berdayaan Cabang-Ranting Muhammadiyah Kecamatan Mangkutana Kabupaten Luwu Ti-mur,” RESONA: Jurnal Ilmiah Pengabdian Masyarakat, 2018, vol. 2, no. 2. doi: 10.35906/jipm01.v2i2.262.
[12] Ibrahim, I., “Strategi Pemberdayaan Ekonomi Melalui Program Amal Usaha Muhammadiyah pada Perdesaan di Sumbawa Barat,” JPEK (Jurnal Pendidikan Ekonomi dan Kewirausahaan), 2019, vol. 3, no. 2, pp. 92–100. doi: 10.29408/jpek.v3i2.1712.
[13] U. Muksin, “Kiprah Muhammadiyah dalam Pemberdayaan Masyarakat Desa,” Anida (Aktu-alisasi Nuansa Ilmu Dakwah), 2015, vol. 14, no. 2. doi: 10.15575/anida.v14i2.846.
[14] I. Tampubolon, “Muhammadiyah dan Pem-berdayaan Masyarakat Islam,” Jurnal at-Taghyir: Jurnal Dakwah dan Pengembangan Masyarakat Desa, 2019, vol. 1, no. 1, pp. 54–68. doi: 10.24952/taghyir.v1i1.1047.
[15] R. Amin and B. Nurdin, “Konflik Perwakafan Tanah Muhammadiyah di Nagari Singkarak Ka-bupaten Solok Indonesia 2015–2019,” Soumatera Law Review, 2020, vol. 3, no. 1. doi: 10.22216/soumlaw.v3i1.5309.
[16] M. Fajar and R. Rudiman, “Klasifikasi Jenis Tanah Wakaf Muhammadiyah di Tanjung Redeb dengan Metode K-means Berbasis SIG,” Borneo Student Research, 2022, vol. 3, no. 2.
[17] M. Z. Yusuf and I. Satibi, “Pendataan Aset Wakaf Muhammadiyah: Tinjauan Akuntansi Syariah,” El Muhasaba: Jurnal Akuntansi, 2022, vol. 13, no. 1, pp. 61–70. doi: 10.18860/em.v13i1.14094.
[18] PP Muhammadiyah, Berita resmi Muhammadi-yah. Yogyakarta: PP Muhammadiyah, 2010.
[19] Lembaga Pengembangan Cabang dan Ranting, Peta Kondisi Cabang dan Ranting di Provinsi Daerah Istimewa Yogyakarta. Yogyakarta: LPCR PP Muhammadiyah, 2012a.
[20] M. Ahmad, M. Rosyidi, dan A. Damanhuri, “Pemetaan Cabang dan Ranting Muhammadi-yah DKI Jakarta Tahun 2018,” Prosiding Kolokium Doktor dan Seminar Hasil Penelitian Hibah, 2019, vol. 1, no. 1, p. 214–238. doi: 10.22236/psd/11214-23874.
[21] Lembaga Pengembangan Cabang dan Ranting, Peta Kondisi Cabang dan Ranting Muhammadi-yah di Provinsi DKI Jakarta. Jakarta: LPCR PP Muhammadiyah, 2012b.
[22] P. Harahap, S. Lubis, and C. Cholish, “Pelatihan Pembuatan Peta Cabang dan Ranting Muham-madiyah Menggunakan Aplikasi Sicara,” RELE: Jurnal Teknik Elektro, 2019, vol. 2, no. 1. doi: 10.30596/rele.v2i1.3644.
[23] Lembaga Pengembangan Cabang dan Ranting. Sicara: Sistem Informasi Cabang dan Ranting [online]. Pimpinan Pusat Muhammadiyah [Ac-cessed 15 Juli 2022]. Available at: https://sicara.id/.
[24] Muhammadiyah, “Indikator Cabang-Ranting Berdaya,” 2021. https://muhammadiyah.or.id/6-indikator-cabang-ranting-berdaya-saing-menurut-lpcr-pp-muhammadiyah/
[25] M. Goyal and S. Aggarwal, “A Review on K-mode Clustering Algorithm,” International Jour-nal of Advanced Research in Computer Science, 2017, vol. 8, no. 7.
[26] F. S. Jumeilah and D. Pratama, “Identifikasi Clus-ter Penduduk Usia Kerja Sumatera Selatan Menggunakan Metode K-modes,” Jurnal Kom-puter Terapan, 2018, vol. 4, no. 1.
[27] S. Ashari, S. Khansa, C. H. M. Surudin, and I. N. Isnainiyah, “Klustering Jumlah Penduduk Kota Bandung Berdasarkan Jenis Kelamin per Keca-matan Tahun 2012 dengan Metode K-means,” Seinasi-Kesi, 2018, vol. 1, no. 1, pp. 22–28.
[28] A. Andriatno, A. I. Pasha, F. K. Nasida, O. Okta-viani, O. M. Putri, N. A. Syahri, and R. Nooraeni, “Clusterisasi Provinsi di Indonesia Menurut Karakteristik Ketenagakerjaan Tahun 2019 Menggunakan Metode Fuzzy C-means Cluster-ing,” Gema Publica: Jurnal Manajemen dan Ke-bijakan Publik, 2021, vol. 6, no. 2, pp. 124–136. doi: 10.14710/gp.6.2.2021.124.
[29] S. Sugiarto and W. Wibowo, “Clusterisasi kabu-paten/kota di Jawa Tengah berdasarkan indi-kator kinerja pembangunan,” Jurnal Litbang Sukowati: Media Penelitian dan Pengembangan, 2020, vol. 3, no. 2. doi: 10.32630/sukowati.v3i2.161.
[30] A. W. Martha dan I. Zain, “The Clustering of Households in Madura based on Factors Affect-ing Their Ingestion of Clean Water using Similar-ity Weight and Filter Method,” Inferensi, 2019, vol. 2, no. 1. doi: 10.12962/j27213862.v2i1.6813.
[31] N. P. M. N. Dewi and I. B. G. Dwidasmara, “Im-plementation of K-modes Algorithm for Cluster-ing of Stress Causes in University Students,” JELIKU (Jurnal Elektronik Ilmu Komputer Uda-yana), 2021, vol. 9, no. 3, pp. 419–428. doi: 10.24843/JLK.2021.v09.i03.p17.
[32] Z. Huang, “Extensions to the K-means Algorithm for Clustering Large Data sets with Categorical Values,” 1998.
[33] M. Cui, “Introduction to the K-means Clustering Algorithm Based on the Elbow Method,” Ac-counting, Auditing and Finance, 2020, vol. 1, no. 1, pp. 5–8. doi: 10.23977/accaf.2020.010102.
[34] P. M. Hasugian, B. Sinaga, J. Manurung, and S. A. A. Hashim, “Best Cluster Optimization with Combination of K-means Algorithm and Elbow Method towards Rice Production Status Determi-nation,” International Journal of Artificial Intelligence Research, 2021, vol. 5, no. 1. doi: 10.29099/ijair.v6i1.232.
[35] M. A. Syakur, B. K. Khotimah, E. M. S. Roch-man, and B. D. Satoto, “Integration K-means Clustering Method and Elbow Method for Identi-fication of the Best Customer Profile Cluster,” IOP Conference Series: Materials Science and Engineering, 2018, vol. 336, artikel 012017. doi: 10.1088/1757-899X/336/1/012017.
[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, 2011, vol. 12, pp. 2825–2830.
[37] B. Bengfort and R. Bilbro, “Yellowbrick: Visual-izing the Scikit-Learn Model Selection Process,” Journal of Open Source Software, 2019, vol. 4, no. 35. doi: 10.21105/joss.01075.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Information Technology and its Utilization

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
