The Clustering of Ranting Muhammadiyah Using the K-MODES Algorithm

Authors

  • Adi Sucipto School of Multi Media, Indonesia

DOI:

https://doi.org/10.56873/jitu.8.2.6066

Keywords:

Clustering, Clusters, Elbow method, K-Modes, Sub-branch or Ranting Muhammadiyah

Abstract

Research on Muhammadiyah often focuses on its preaching models, responses to various conditions, and strategies in proselytization or resource management, but there is limited exploration of the Muhammadiyah organization itself. Specifically, the condition of Pimpinan Ranting Muhammadiyah (The Leader of Muhammadiyah Sub-Branch or PRM) as the lowest organizational structure, is seldom addressed. Currently, the LPCR utilizes SICARA to categorize organizations based on scores reflecting routine activities, yet it does not map these organizations based on similar potential. Thus, there is a need for a method to group these organizations based on a condition mapping to facilitate targeted revitalization efforts. This study aims to cluster PRM based on the Branch and Sub-branch Information System (Sistem Informasi Cabang dan Ranting or SICARA) questionnaire responses. Given that the SICARA questionnaire data is categorical, the K-MODES method was chosen for clustering. The optimal number of clusters was determined using the elbow method. The resulting clusters, derived using the elbow method, there are eight clusters, each exhibiting distinct characteristics.

References

[1] D. K. Alka, “Alam Digital Muhammadiyah Dakwah Islam Washatiyah Berkemajuan,” MAARIF, 2019, vol. 14, no. 2. doi: 10.47651/mrf.v14i2.64.

[2] N. A. Prabowo, P. Hendradi, and B. P. U. Mageklang, “Kerangka Model Aplikasi e-dakwah Pengembangan Kaderisasi pada Pengurus Daerah Muhammadiyah Kota Magelang,” Indonesian Journal of Networking and Security (IJNS), 2019, vol. 8, no. 3. doi: 10.55181/ijns.v8i3.1603.

[3] Z. N. Rohman, “Manfaat media dalam model dakwah kultural,” Tarbawi Khatulistiwa: Jurnal Pendidikan Islam, 2022, vol. 8, no. 1. doi: 10.29406/tbw.v8i1.3712.

[4] A. Syarofah, Y. Ichsan, P. Rahman, H. Kusumaningrum, and S. Nafiah, “Dakwah Muhammadiyah di Era Digital bagi Kalangan Milenial,” Dakwah: Jurnal Kajian Dakwah dan Kemasyarakatan, 2021, vol. 25, no. 1. doi: 10.15408/dakwah.v25i1.21774.

[5] R. Vebrynda, “Pemberdayaan media baru dalam dakwah di Pimpinan Daerah Muhammadiyah (PDM) Bantul,” Prosiding Seminar Nasional Program Pengabdian Masyarakat, 2020. doi: 10.18196/ppm.310.548.

[6] F. Amar and E. Setiawan, “Model Dakwah Mu-hammadiyah di Daerah Terpencil, Terluar dan Terdalam: Studi Kasus di Kalimantan Tengah,” Prosiding Kolokium Doktor dan Seminar Hasil Penelitian Hibah, 2019, vol. 1, no. 1, p. 538–552. doi: 10.22236/psd/11538-55294.

[7] A. Arsam, “Manajemen dan Strategi Dakwah Muhammadiyah Kota Semarang,” Komunika: Jurnal Dakwah dan Komunikasi, 2010, vol. 4, no. 2. doi: 10.24090/komunika.v4i2.150.

[8] F. Riady, “Pola Dakwah Muhammadiyah di Kota Banjarmasin,” Al-Mishbah: Jurnal Ilmu Dakwah dan Komunikasi, 2014, vol. 10, no. 1.

[9] H. R. Hakim, “Dakwah Digital Pimpinan Pusat Muhammadiyah: Studi Kasus Televisi Streaming Tvmu.tv,” Magister Thesis. Bandung: UIN Sunan Gunung Djati, 2021. http://digilib.uinsgd.ac.id/38948/.

[10] M. Ali, “Membedah Tujuan Pendidikan Muham-madiyah,” Profetika: Jurnal Studi Islam, 2016, vol. 17, no. 1. doi: 10.23917/profetika.v17i01.2099.

[11] I. Halim, “KKN-PPM Pembinaan dan Pem-berdayaan Cabang-Ranting Muhammadiyah Kecamatan Mangkutana Kabupaten Luwu Ti-mur,” RESONA: Jurnal Ilmiah Pengabdian Masyarakat, 2018, vol. 2, no. 2. doi: 10.35906/jipm01.v2i2.262.

[12] Ibrahim, I., “Strategi Pemberdayaan Ekonomi Melalui Program Amal Usaha Muhammadiyah pada Perdesaan di Sumbawa Barat,” JPEK (Jurnal Pendidikan Ekonomi dan Kewirausahaan), 2019, vol. 3, no. 2, pp. 92–100. doi: 10.29408/jpek.v3i2.1712.

[13] U. Muksin, “Kiprah Muhammadiyah dalam Pemberdayaan Masyarakat Desa,” Anida (Aktu-alisasi Nuansa Ilmu Dakwah), 2015, vol. 14, no. 2. doi: 10.15575/anida.v14i2.846.

[14] I. Tampubolon, “Muhammadiyah dan Pem-berdayaan Masyarakat Islam,” Jurnal at-Taghyir: Jurnal Dakwah dan Pengembangan Masyarakat Desa, 2019, vol. 1, no. 1, pp. 54–68. doi: 10.24952/taghyir.v1i1.1047.

[15] R. Amin and B. Nurdin, “Konflik Perwakafan Tanah Muhammadiyah di Nagari Singkarak Ka-bupaten Solok Indonesia 2015–2019,” Soumatera Law Review, 2020, vol. 3, no. 1. doi: 10.22216/soumlaw.v3i1.5309.

[16] M. Fajar and R. Rudiman, “Klasifikasi Jenis Tanah Wakaf Muhammadiyah di Tanjung Redeb dengan Metode K-means Berbasis SIG,” Borneo Student Research, 2022, vol. 3, no. 2.

[17] M. Z. Yusuf and I. Satibi, “Pendataan Aset Wakaf Muhammadiyah: Tinjauan Akuntansi Syariah,” El Muhasaba: Jurnal Akuntansi, 2022, vol. 13, no. 1, pp. 61–70. doi: 10.18860/em.v13i1.14094.

[18] PP Muhammadiyah, Berita resmi Muhammadi-yah. Yogyakarta: PP Muhammadiyah, 2010.

[19] Lembaga Pengembangan Cabang dan Ranting, Peta Kondisi Cabang dan Ranting di Provinsi Daerah Istimewa Yogyakarta. Yogyakarta: LPCR PP Muhammadiyah, 2012a.

[20] M. Ahmad, M. Rosyidi, dan A. Damanhuri, “Pemetaan Cabang dan Ranting Muhammadi-yah DKI Jakarta Tahun 2018,” Prosiding Kolokium Doktor dan Seminar Hasil Penelitian Hibah, 2019, vol. 1, no. 1, p. 214–238. doi: 10.22236/psd/11214-23874.

[21] Lembaga Pengembangan Cabang dan Ranting, Peta Kondisi Cabang dan Ranting Muhammadi-yah di Provinsi DKI Jakarta. Jakarta: LPCR PP Muhammadiyah, 2012b.

[22] P. Harahap, S. Lubis, and C. Cholish, “Pelatihan Pembuatan Peta Cabang dan Ranting Muham-madiyah Menggunakan Aplikasi Sicara,” RELE: Jurnal Teknik Elektro, 2019, vol. 2, no. 1. doi: 10.30596/rele.v2i1.3644.

[23] Lembaga Pengembangan Cabang dan Ranting. Sicara: Sistem Informasi Cabang dan Ranting [online]. Pimpinan Pusat Muhammadiyah [Ac-cessed 15 Juli 2022]. Available at: https://sicara.id/.

[24] Muhammadiyah, “Indikator Cabang-Ranting Berdaya,” 2021. https://muhammadiyah.or.id/6-indikator-cabang-ranting-berdaya-saing-menurut-lpcr-pp-muhammadiyah/

[25] M. Goyal and S. Aggarwal, “A Review on K-mode Clustering Algorithm,” International Jour-nal of Advanced Research in Computer Science, 2017, vol. 8, no. 7.

[26] F. S. Jumeilah and D. Pratama, “Identifikasi Clus-ter Penduduk Usia Kerja Sumatera Selatan Menggunakan Metode K-modes,” Jurnal Kom-puter Terapan, 2018, vol. 4, no. 1.

[27] S. Ashari, S. Khansa, C. H. M. Surudin, and I. N. Isnainiyah, “Klustering Jumlah Penduduk Kota Bandung Berdasarkan Jenis Kelamin per Keca-matan Tahun 2012 dengan Metode K-means,” Seinasi-Kesi, 2018, vol. 1, no. 1, pp. 22–28.

[28] A. Andriatno, A. I. Pasha, F. K. Nasida, O. Okta-viani, O. M. Putri, N. A. Syahri, and R. Nooraeni, “Clusterisasi Provinsi di Indonesia Menurut Karakteristik Ketenagakerjaan Tahun 2019 Menggunakan Metode Fuzzy C-means Cluster-ing,” Gema Publica: Jurnal Manajemen dan Ke-bijakan Publik, 2021, vol. 6, no. 2, pp. 124–136. doi: 10.14710/gp.6.2.2021.124.

[29] S. Sugiarto and W. Wibowo, “Clusterisasi kabu-paten/kota di Jawa Tengah berdasarkan indi-kator kinerja pembangunan,” Jurnal Litbang Sukowati: Media Penelitian dan Pengembangan, 2020, vol. 3, no. 2. doi: 10.32630/sukowati.v3i2.161.

[30] A. W. Martha dan I. Zain, “The Clustering of Households in Madura based on Factors Affect-ing Their Ingestion of Clean Water using Similar-ity Weight and Filter Method,” Inferensi, 2019, vol. 2, no. 1. doi: 10.12962/j27213862.v2i1.6813.

[31] N. P. M. N. Dewi and I. B. G. Dwidasmara, “Im-plementation of K-modes Algorithm for Cluster-ing of Stress Causes in University Students,” JELIKU (Jurnal Elektronik Ilmu Komputer Uda-yana), 2021, vol. 9, no. 3, pp. 419–428. doi: 10.24843/JLK.2021.v09.i03.p17.

[32] Z. Huang, “Extensions to the K-means Algorithm for Clustering Large Data sets with Categorical Values,” 1998.

[33] M. Cui, “Introduction to the K-means Clustering Algorithm Based on the Elbow Method,” Ac-counting, Auditing and Finance, 2020, vol. 1, no. 1, pp. 5–8. doi: 10.23977/accaf.2020.010102.

[34] P. M. Hasugian, B. Sinaga, J. Manurung, and S. A. A. Hashim, “Best Cluster Optimization with Combination of K-means Algorithm and Elbow Method towards Rice Production Status Determi-nation,” International Journal of Artificial Intelligence Research, 2021, vol. 5, no. 1. doi: 10.29099/ijair.v6i1.232.

[35] M. A. Syakur, B. K. Khotimah, E. M. S. Roch-man, and B. D. Satoto, “Integration K-means Clustering Method and Elbow Method for Identi-fication of the Best Customer Profile Cluster,” IOP Conference Series: Materials Science and Engineering, 2018, vol. 336, artikel 012017. doi: 10.1088/1757-899X/336/1/012017.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, 2011, vol. 12, pp. 2825–2830.

[37] B. Bengfort and R. Bilbro, “Yellowbrick: Visual-izing the Scikit-Learn Model Selection Process,” Journal of Open Source Software, 2019, vol. 4, no. 35. doi: 10.21105/joss.01075.

Downloads

Published

2025-12-31

How to Cite

The Clustering of Ranting Muhammadiyah Using the K-MODES Algorithm. (2025). Journal of Information Technology and Its Utilization, 8(2), 61-67. https://doi.org/10.56873/jitu.8.2.6066

Similar Articles

31-37 of 37

You may also start an advanced similarity search for this article.