Corn Leaf Disease Classification Using the EfficientNetB5 Deep Learning Model

Main Article Content

Rima Tri Wahyuningrum
Rio Erfian
Ari Kusumaningsih Kusumaningsih
Hapsari Peni Agustin Tjahyaningtijas Tjahyaningtijas

Abstract

The second most important food crop in Indonesia, after rice, is corn, which is highly susceptible to leaf diseases such as common rust, cercospora gray leaf spot, and northern leaf blight. In spite of traditional Machine Learning, in which manual feature extraction must be impeccable for optimal results, a model capable of accurate classification is required. In this investigation, the Deep Learning model EfficientNetB5 is used to classify corn leaf diseases, and the performance model between learning rate and batch size hyperparameters is compared.  All models are identical to the dataset, which consists of 3,852 images divided into 4 classifications. The testing results indicate that the combination of learning rate = 0.0001 and batch size = 32 obtains the highest value compared to other models. The obtained evaluation values were 96.27 % accuracy, 90.90 % precision, 97.55% specificity, and 88.13 % sensitivity.

Article Details

Section
Informatics

References

Amzeri, A. (2018). Tinjauan Perkembangan Pertanian Jagung di Madura dan Alternatif Pengolahan Menjadi Biomaterial. Rekayasa, 11(1), 74–86.

Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics, 61, 101182.

Chamarty, A. (2020). Fine-Tuning of Learning Rate for Improvement of Object Detection Accuracy. 2020 IEEE India Council International Subsections Conference (INDISCON), 135–141.

Fan, J., Upadhye, S., & Worster, A. (2006). Understanding receiver operating characteristic (ROC) curves. CJEM, 8, 19–20.

Gajowniczek, K., Zkabkowski, T., & Szupiluk, R. (2014). ESTIMATING THE ROC CURVE AND ITS SIGNIFICANCE FOR CLASSIFICATION MODELS’ASSESSMENT. Metody Ilościowe w Badaniach Ekonomicznych, 15(2), 382–391.

Geetharamani, G., & Arun Pandian, J. (2019). Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network. In Mendeley Data (Vol. 1).

Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express, 6(4), 312–315.

Lu, J., Tan, L., & Jiang, H. (2021). Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification. Agriculture, 11, 707.

Nugroho, A., & Suhartanto, H. (2020). Hyper-Parameter Tuning based on Random Search for DenseNet Optimization. 2020 7th International Conference on Information Technology, Amzeri, A. (2018). Tinjauan Perkembangan Pertanian Jagung di Madura dan Alternatif Pengolahan Menjadi Biomaterial. Rekayasa, 11(1), 74–86.

Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics, 61, 101182.

Chamarty, A. (2020). Fine-Tuning of Learning Rate for Improvement of Object Detection Accuracy. 2020 IEEE India Council International Subsections Conference (INDISCON), 135–141.

Fan, J., Upadhye, S., & Worster, A. (2006). Understanding receiver operating characteristic (ROC) curves. CJEM, 8, 19–20.

Gajowniczek, K., Zkabkowski, T., & Szupiluk, R. (2014). ESTIMATING THE ROC CURVE AND ITS SIGNIFICANCE FOR CLASSIFICATION MODELS’ASSESSMENT. Metody Ilościowe w Badaniach Ekonomicznych, 15(2), 382–391.

Geetharamani, G., & Arun Pandian, J. (2019). Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network. In Mendeley Data (Vol. 1).

Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express, 6(4), 312–315.

Lu, J., Tan, L., & Jiang, H. (2021). Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification. Agriculture, 11, 707.

Nugroho, A., & Suhartanto, H. (2020). Hyper-Parameter Tuning based on Random Search for DenseNet Optimization. 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 96–99.

Sibiya, M., & Sumbwanyambe, M. (2019). A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks. AgriEngineering, 1(1), 119–131.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437.

Sudjono, M. S. (1988). Penyakit Jagung dan Pengendaliannya. In Buku Jagung. Puslitbang Tanaman Pangan.

Syarief, M., & Setiawan, W. (2020). Convolutional neural network for maize leaf disease image classification. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1376–1381.

Tan, M., & Le, Q. (2019). {E}fficient{N}et: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, 6105–6114.

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., & Pandey, H. M. (2020). An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 175, 105456.

Zhang, X., Qiao, Y., Meng, F., Fan, C., & Zhang, M. (2018). Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks. IEEE Access, 6, 30370–30377.