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Abstract – The main challenge in developing smart cities lies in the difficulty of determining effective and 

efficient infrastructure priorities. This study aims to implement classification techniques and to identify 

infrastructure priorities in smart cities. The research method employed is experimental, using the Random 

Forest classification algorithm and secondary data from various sources related to urban infrastructure. The 

study results indicate that the experimental method with classification techniques can identify infrastructure 

priorities with a high degree of accuracy. Data analysis on population density, economic growth, traffic 

congestion, and other variables reveals a significant relationship between infrastructure needs and these 

variables. The experimental model developed with the Random Forest algorithm can predict infrastructure 

needs with high accuracy, making it a valuable tool for city governments in making more precise decisions. 

The application of the Random Forest algorithm also demonstrates that the identified infrastructure priorities 

align with real needs on the ground, ultimately improving the efficiency of smart city management. Therefore, 

this study makes a tangible contribution to supporting smart city development through a more effective data-

driven approach. 
Keywords: classification, smart city, infrastructure priorities, Random Forest, urban planning 

 

Abstrak – Tantangan utama dalam pengembangan kota pintar adalah kesulitan dalam menentukan prioritas 

infrastruktur yang efektif dan efisien. Studi ini bertujuan untuk megimplementasikan teknik klasifikasi guna 

mengidentifikasi prioritas infrastruktur di kota pintar. Metode penelitian yang digunakan adalah 

eksperimental dengan algoritma klasifikasi Random Forest, dengan memanfaatkan data sekunder dari 

berbagai sumber terkait infrastruktur perkotaan. Hasil penelitian menunjukkan bahwa metode eksperimen 

dengan teknik klasifikasi mampu mengidentifikasi prioritas infrastruktur dengan tingkat akurasi yang tinggi. 

Analisis data tentang kepadatan penduduk, pertumbuhan ekonomi, kemacetan lalu lintas, dan variabel lainnya 

mengungkapkan adanya hubungan yang signifikan antara kebutuhan infrastruktur dan variabel-variabel 

tersebut. Model ekperimen dengan algoritma Random Forest yang dikembangkan dapat memprediksi 

kebutuhan infrastruktur dengan akurasi tinggi, sehingga menjadi alat yang berharga bagi pemerintah kota 

dalam membuat keputusan yang lebih tepat. Penerapan algoritma Random Forest ini juga menunjukkan 

bahwa prioritas infrastruktur yang ditetapkan sesuai dengan kebutuhan nyata di lapangan, yang pada 

akhirnya meningkatkan efisiensi manajemen kota pintar. Oleh karena itu, studi ini memberikan kontribusi 

nyata dalam mendukung pengembangan kota pintar melalui pendekatan berbasis data yang lebih efektif. 

Kata kunci: klasifikasi, kota pintar, prioritas infrastruktur, Random Forest, perencanaan kota 

 

 

INTRODUCTION  

 In this modern era, the concept of a smart city 

has become a primary focus in urban development 

across various countries (Clement et al., 2023). A smart 

city integrates information and communication 

technology (ICT) into urban management to enhance 

efficiency, reduce resource consumption, and provide 

better services to citizens (Alahi et al., 2023). However, 

one of the biggest challenges in developing a smart city 

is the proper planning and management of 

infrastructure. Infrastructure, including transportation, 
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energy, water, and other public services, forms the 

backbone of a city's sustainability (Paes et al., 2023). 

However, with the rapid growth of population and 

urbanization, many cities struggle to predict and meet 

the ever-evolving infrastructure needs (Al-Raeei, 

2024). 

City governments often face challenges in 

determining infrastructure development priorities 

(Thottolil et al., 2023)(Heaton & Parlikad, 

2019)(Barredo & Demicheli, 2003). Uncertainty in 

identifying areas that require urgent attention and the 

allocation of limited resources leads many cities to 

experience inefficiencies in infrastructure management 

(Le Gat et al., n.d.)(Vinagre et al., 2023). This issue is 

exacerbated by various factors, such as changing 

migration patterns, environmental pressures, and socio-

economic dynamics, which affect infrastructure needs 

differently across different areas of the city (Jurgilevich 

et al., 2021)(Yussif et al., 2023). Additionally, 

traditional approaches to infrastructure planning often 

fail to accommodate the complexity and dynamics 

present in modern urban environments (Son et al., 

2023)(Chester & Allenby, 2019). 

As technology advances, data analysis has become 

a crucial tool in supporting strategic decisions in urban 

management. Classification techniques, which are a 

part of machine learning, offer potential solutions to 

this issue. By using historical and real-time data, 

classification techniques can help identifying patterns 

and trends that can be used to determine infrastructure 

development priorities. However, despite their 

significant potential, the application of classification 

techniques in the context of smart city infrastructure 

planning still faces several challenges. One major 

challenge is selecting and applying the appropriate 

classification techniques, as well as ensuring that the 

results are easily interpretable by policymakers. 

Additionally, another issue that arises is the quality 

and availability of data used for analysis. Many cities, 

especially in developing countries, still struggle to 

collect relevant and accurate data (Alshamaila et al., 

2024)(Hashem et al., 2023). The available data is often 

incomplete or inconsistent, which can affect the 

accuracy of the classification results (Sun et al., 

2023)(Wang et al., 2024). These challenges underscore 

the importance of a structured approach and robust 

methodology in applying classification techniques for 

infrastructure planning. Developing reliable and easily 

implementable predictive models becomes an urgent 

need to support effective decision-making in smart city 

management. 

On the other hand, there is an urgent need to update 

and expand the existing literature on the application of 

classification techniques in smart city infrastructure 

planning. Previous research has often focused on more 

complex techniques, such as deep learning or network 

analysis, which may not always align with the practical 

needs and resource constraints of many cities (Ghazal 

et al., 2023)(Prakash et al., 2024). Therefore, there is a 

need for research that focuses on simpler yet still 

effective approaches that can be applied in various 

urban contexts and used by city governments without 

requiring extensive technical expertise. This research 

aims to provide more practical and applicable solutions 

to the challenges of smart city infrastructure planning. 

This research aims to develop and implement 

classification techniques that can be used to identify 

infrastructure priorities in smart city management. By 

leveraging relevant data from various sources, the 

study will explore how the Random Forest 

classification technique can be applied to analyze and 

predict infrastructure needs across different urban 

areas. The primary goal of this research is to create a 

simple yet effective model that can assist city 

governments in making informed decisions regarding 

resource allocation for infrastructure development. 

Additionally, this research aims to enhance 

understanding of the potential and limitations of 

classification techniques in the context of smart city 

planning, and to provide practical guidance for 

policymakers in implementing the analysis results in 

urban infrastructure planning and management. Thus, 

this study is expected to make a significant contribution 

to improve the efficiency and effectiveness of smart 

city management through a data-driven approach. 
 

RESEARCH METHOD 

 This research method employs an experimental 

model based on the Random Forest algorithm to 

identify smart city infrastructure priorities, considering 

ten key variables: Population Density, Economic 

Growth, Traffic Density, Energy Demand, 

Infrastructure Availability, Air Quality, Frequency of 

Natural Disasters, Clean Water Needs, Public 

Satisfaction Index, and Public Services Distribution. 

Data from these variables are collected, cleaned, and 

normalized before being input into the model. The 

Random Forest algorithm, which utilizes an ensemble 

method based on decision trees, is applied to generate 

infrastructure priority classifications. The data is split 

into training and testing sets, and the model is evaluated 

using accuracy metrics. The research results provide an 

accurate predictive model to support data-driven smart 

city infrastructure planning. 

Study Design 

This study uses a quantitative method with a 

secondary data analysis approach to develop a 

predictive model for smart city infrastructure using 

Random Forest classification techniques. The data is 

sourced from city government data XYZ and historical 

records related to urban infrastructure. The Random 
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Forest technique is chosen for its ability to handle 

complex data and numerous variables, as well as its 

capacity to provide well-interpreted results. The 

research process will begin with data collection and 

preprocessing, followed by the application of the 

Random Forest model to identify infrastructure 

development priorities. The results of this model will 

then be visualized in the form of an infrastructure 

priority map to facilitate decision-making by 

stakeholders in the smart city. 

 

RESULTS AND DISCUSSION 

The data in this study was collected from city 

government data XYZ , totaling 50 entries covering 

key variables over the past year. These variables were 

analyzed to ensure even distribution of the data, and 

potential anomalies such as missing values or outliers 

were identified. The preprocessing steps included data 

cleaning, such as removing duplicates, imputing 

missing values using the mean method, and 

normalizing the data on a 0–1 scale to standardize the 

variables. 

Once the data was prepared, the Random Forest 

algorithm was applied to build the classification model. 

Model parameters, such as the number of trees 

(n_estimators) and maximum depth (max_depth), were 

optimized using grid search techniques to improve the 

model's accuracy. The dataset was split into 70% 

training data and 30% testing data using stratified 

sampling to maintain a balanced class distribution. The 

model's performance was evaluated using metrics like 

accuracy, precision, recall, and F1-score, with an 

accuracy of 90%. 

Model validation was conducted using a new 

dataset with an additional 15 entries, resulting in a 

validation accuracy of 88%, demonstrating that the 

model has good generalization capability despite the 

limited data size. The analysis of results showed that 

variables such as Traffic Density, Infrastructure 

Availability, and Clean Water Needs significantly 

influence infrastructure priorities, as evidenced by the 

importance of features identified in the Random Forest 

model. These results confirm that a data-driven 

approach can effectively support smart city 

infrastructure planning. 
 

Table 1 Research Data 

No 

Population 

Density 

(km²) 

Economic 

Growth 

(%) 

Traffic 

Density 

(vehicles/ 

hour) 

Energy 

Demand 

(MWh) 

Infrastructure 

Availability 

(score 1-10) 

Air 

Quality 

(AQI) 

Frequency of 

Natural 

Disasters 

(events/ year) 

Clean Water 

Needs 

(m³/capita) 

Public 

Satisfaction 

Index (%) 

Public Services 

Distribution 

(score 1-10) 

1 
4174 1,19 846 363 7 140 1 339 75,54 1 

2 
4507 9,73 220 134 4 104 4 233 78,8 8 

3 
1860 8,49 1040 305 4 154 0 383 61,11 1 

4 
2294 2,91 366 180 2 157 4 127 55,59 1 

5 
2130 2,64 1497 149 3 107 0 207 66,88 2 

: : : : : : : : : : : 

: : : : : : : : : : : 

: : : : : : : : : : : 

44 
1668 1,72 1016 286 5 153 4 448 82,22 5 

45 
1595 4,85 1350 352 3 142 3 299 59,61 9 

46 
2339 3,21 1914 318 4 142 1 147 71,93 8 

47 
2563 9,73 1646 440 8 108 3 385 70,19 3 

48 
2763 4,20 881 496 5 126 1 110 71,45 1 

49 
4847 2,57 1474 188 9 183 3 400 88,16 3 

50 
1901 1,56 1832 138 3 115 1 495 86,14 3 

The data presented in Table 2 reflects the 

relationship between various factors contributing to the 

well-being and quality of life in a given region. With 

50 data points, this sample adequately represents the 

complexity of interactions between key variables, such 

as population density, economic growth, and 

environmental factors. For instance, a high population 

density of 4,908 people per km² is typically 

accompanied by higher energy demand, reaching up to 

1,840 MWh, and elevated traffic density. Traffic 

density also shows significant variation, ranging from 

101 to 1,926 vehicles per hour, which influences air 

quality, with AQI values ranging from 58 to 197. The 

frequency of natural disasters varies as well, with some 
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regions experiencing up to four events per year, which 

can impact infrastructure availability and clean water 

needs. 

Economic growth, which ranges from 1.08% to 

9.87%, does not always correlate with the Public 

Satisfaction Index, which varies from 55.59% to 

98.59%. Public service distribution also shows 

variation, with scores from 1 to 10, reflecting differing 

levels of service accessibility across regions. Overall, 

this data highlights the complexity of the interactions 

between population density, economic growth, and 

environmental variables, all of which contribute to the 

well-being of the community. A holistic approach is 

necessary to effectively understand and manage these 

factors. Given the diversity and range of variables 

within the 50 data points, this dataset is sufficient for 

the research analysis and provides a representative 

foundation for the study.

Table 2 Descriptive Statistics Results 

Statistical Description: 

  

Population 

Density (per 

km²) 

Economic 

Growth 

(%)   

Traffic 

Density 

Energy 

Demand 

(MWh)   

Infrastructure 

Availability  

Air Quality 

(AQI)   

Natural 

Disaster 

Frequency 

(events/year)   

count 50.000.000 50.000.000 50.000.000 50.000.000 50.000.000 50.000.000 50.000.000 

mean 2.993.100.000 4.970.000 1.087.640.000 278.320.000 5.080.000 134.620.000 2.320.000 

std 1.257.319.423 2.604.468 450.244.322 122.649.233 2.513.961 38.417.093 1.300.549 

min 1.003.000.000 1.080.000 213.000.000 101.000.000 1.000.000 58.000.000 0.000000 

25% 1.908.250.000 2.747.500 810.500.000 178.500.000 3.000.000 101.750.000 1.000.000 

50% 2.858.000.000 4.390.000 1.028.000.000 260.500.000 5.000.000 138.500.000 2.000.000 

75% 4.151.250.000 6.907.500 1.469.000.000 361.500.000 7.000.000 161.500.000 3.000.000 

max 4.908.000.000 9.870.000 1.926.000.000 496.000.000 9.000.000 197.000.000 4.000.000 

 

 
The descriptive statistics results in Table 2 indicate 

that the analyzed variables exhibit significant variation. 

The average population density is 2993.1 per km², with 

a standard deviation of 1257.3, reflecting substantial 

differences between the studied regions. The average 

economic growth rate is 4.97%, with a range between 

1.08% and 9.87%, indicating a wide economic 

variation. Traffic density has an average of 1087.64 

vehicles/hour, with a maximum value of 1,926 

vehicles/hour, highlighting regions with very high 

traffic congestion. The average energy demand is 

278.32 MWh, with a high standard deviation (122.65 

MWh), indicating an imbalance in energy needs across 

regions. 

Infrastructure availability shows an average score of 

5.08 out of 10, with a fairly even distribution between 

regions with very good infrastructure (score of 9) and 

those with inadequate infrastructure (score of 1). The 

average air quality, measured by AQI, is 134.62, with 

some regions experiencing very poor air quality (AQI 

up to 197). The average frequency of natural disasters 

is 2.32 events per year, indicating that some regions 

face higher disaster risks than others. The variation in 

this data highlights significant differences in 

demographic, economic, and environmental conditions 

across the studied regions. 

 

Figure 1 Correlation Analysis 

Based on the correlation analysis shown in Figure 1, 

conducted through a heatmap, several key findings 

reveal intriguing relationships between the variables 

studied. This research includes variables such as 

population density, economic growth, traffic density, 

energy demand, infrastructure availability, air quality, 

frequency of natural disasters, and other relevant 

indicators used to measure the well-being and 

challenges faced by a region. 

1. Population Density and Economic Growth 
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The first notable finding is a positive relationship 

between population density and economic growth, 

with a correlation of 0.24. Although this figure does 

not indicate a very strong correlation, the 

relationship is significant enough to conclude that 

areas with higher population densities tend to 

experience better economic growth. This 

phenomenon can be explained by several factors. 

First, densely populated areas usually have a larger 

market for goods and services, which drives 

economic growth through increased consumption. 

Second, high population density often contributes to 

a larger workforce, which can enhance productivity 

and innovation. Additionally, investment in 

infrastructure and public services is generally higher 

in densely populated areas, which can further 

support economic growth. 

2. Air Quality and Frequency of Natural Disasters 

The second finding reveals a negative 

relationship between air quality and the frequency 

of natural disasters, with a correlation of -0.18. This 

suggests that areas with poorer air quality tend to 

experience more natural disasters. Although this 

relationship may not be direct, it can be associated 

with the fact that air pollution can affect 

atmospheric conditions, which in turn it can 

increase the risk of natural disasters such as floods, 

storms, or droughts. For instance, high levels of air 

pollution can exacerbate global warming effects, 

which have been shown to increase the frequency 

and intensity of natural disasters. Moreover, 

polluted areas often have more fragile ecosystems, 

making them more vulnerable to significant 

environmental disruptions. 

3. Traffic Density and Energy Demand 

The analysis also reveals a positive correlation 

between traffic density and energy demand, with a 

correlation of 0.11. This indicates that areas with 

high traffic density tend to have greater energy 

demand. This relationship is quite logical, 

considering that heavy traffic reflects higher vehicle 

usage, which in turn it increases fuel and energy 

consumption. Additionally, areas with heavy traffic 

may require more energy for supporting 

infrastructure, such as street lighting, traffic signals, 

and other energy needs related to urban mobility. 

4. Infrastructure Availability and Frequency of Natural 

Disasters 

Another moderate relationship found is between 

infrastructure availability and the frequency of 

natural disasters, with a correlation of 0.08. 

Although this correlation is weak, it suggests that 

areas with better infrastructure may experience 

natural disasters more frequently. One possible 

explanation is that areas with developed 

infrastructure are often more accessible and 

exposed, which can increase the frequency of 

recorded disaster events. For example, areas with 

well-developed transportation infrastructure allow 

for quicker evacuations and emergency responses 

but also mean that more people and properties are at 

risk when disasters occur. 

5. Energy Demand and Air Quality 

The final finding shows a weak negative 

relationship between energy demand and air quality, 

with a correlation of -0.03. This indicates that areas 

with higher energy demand tend to have worse air 

quality. This relationship can be linked to emissions 

from power generation and other energy uses that 

contribute to air pollution. For instance, power 

plants that use fossil fuels can emit greenhouse 

gases and other pollutants that deteriorate air 

quality. In regions with high energy demand, 

increased emissions can lead to a significant decline 

in air quality. 

 

Figure 2 Distribution of Population Density 

Figure 2 provides an overview of the distribution of 

population density in a given area, reflecting significant 

patterns of urbanization and demographic 

characteristics. From the data interpretation, it can be 

concluded that the area exhibits considerable variation 

in population density, with most regions falling within 

the moderate to high-density range. 

Overall, the areas with the highest population 

density, ranging from 4,200 to 4,700 people per square 

kilometer, account for the largest number of regions, 

totaling 11. This indicates that areas with extremely 

high density are more predominant in this distribution, 

suggesting a significant concentration of population in 

certain parts of the region, likely in urban centers or 

densely populated metropolitan areas. On the other 

hand, areas with lower population density, ranging 

from 3,200 to 3,700 people per square kilometer, 

consist of only 2 regions, which is the lowest number 

in the displayed distribution. This suggests that while 

there are extremely dense areas, such extreme density 

is relatively rare, indicating that most regions may not 

have yet reached very high levels of urbanization. 
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The average population density tends to range from 

around 1,000 to 4,700 people per square kilometer, 

with many areas distributed evenly across various 

density ranges. This indicates that the region has a wide 

spectrum in terms of density, from more sparsely 

populated suburban areas to highly dense urban 

centers. The fact that there are a significant number of 

areas in almost every density range suggests a diverse 

population dynamic, which may be influenced by 

various factors such as economic conditions, 

infrastructure, and urban planning policies. 

Population density in the region shows a trend 

towards urbanization, with many areas experiencing 

high density, especially in the range of 2,700 to 4,700 

people per square kilometer. This trend may indicate a 

concentration of population in certain areas, possibly 

due to economic factors, accessibility, or better public 

facilities in high-density regions. Conversely, areas 

with lower densities are relatively fewer, which may 

reflect less developed suburban or peripheral areas or 

those with different development policies, such as land 

use restrictions or environmental protection. The varied 

distribution of population density also reflects the 

challenges and opportunities in planning and managing 

the region. With a substantial number of areas 

experiencing very high density, it is important for 

policymakers to consider the implications for 

infrastructure, public services, and residents' quality of 

life. High density can present challenges related to 

traffic congestion, housing needs, and the provision of 

basic services such as water, electricity, and sanitation. 

However, high density can also offer greater economic 

opportunities, efficiencies in service delivery, and more 

intensive development of commercial and industrial 

areas. 

Overall, the data presented indicates that the region 

is undergoing significant urbanization, with increasing 

population density in various parts of the area. The high 

average population density and extensive distribution 

reflect the complex dynamics of regional development, 

which will require careful planning and sustainable 

development strategies to accommodate the growing 

population. Additionally, the variation in population 

density signals the need for differentiated development 

policies, where areas with lower density may require 

different approaches compared to highly dense areas. 

In conclusion, the population density distribution in the 

region shows diverse patterns, with a strong trend 

towards urbanization and significant population 

concentration in certain areas. Nevertheless, there are 

still relatively less dense areas, indicating potential for 

further development or the need for specific policies to 

maintain a balance between growth and quality of life. 

A holistic and sustainable approach is required to 

ensure that regional development can accommodate the 

increasing population needs without compromising the 

well-being of the community and the environment. 

 

Figure 3 Distribution of Air Quality (AQI) 

The box plot in Figure 3 illustrates the distribution 

of air quality (AQI) over a specific time period, 

providing important insights into the data 

characteristics. This box plot presents five key 

summary statistics: the minimum value, first quartile 

(Q1), median, third quartile (Q3), and maximum, 

offering an overview of how the air quality data is 

distributed. From the interpretation of this box plot, it 

can be concluded that air quality during the analyzed 

time period is relatively concentrated between values 

of approximately 105 and 160. This is evident from the 

interquartile range (IQR), which represents the middle 

50% of the data, with Q1 around 105 and Q3 around 

160. The box representing the IQR shows that the 

majority of the air quality data falls within this range, 

reflecting a fairly consistent air quality without extreme 

fluctuations. 

The median, located around 140, indicates the 

midpoint of the data, suggesting that half of the 

observed air quality values are below 140, while the 

other half are above this value. With no outliers 

detected in this box plot—typically identified by data 

points beyond the whiskers extending from the box—it 

can be inferred that the air quality data tends to be 

stable and does not exhibit significant variation or 

anomalies. The whiskers extending from 

approximately 55 to 200 show that there are no unusual 

extreme values in the measured data. The minimum 

and maximum values are around 55 and 200, 

respectively, indicating that while there is variation in 

air quality during the time period, there are no 

deviations significant enough to be considered outliers. 

In other words, all data falls within a normal range, 

without any values far beyond the expected limits. This 

suggests that despite fluctuations in air quality, the 

variation remains within acceptable bounds. 

Overall, the box plot suggests that air quality in the 

analyzed region and time period is relatively stable and 

concentrated around the median value of 140, with 

most data clustered between 105 and 160. This 

indicates that during the analyzed time period, air 

quality tends to be predictable and does not show 
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surprising patterns. Although there is variation, the 

differences in air quality are not substantial enough to 

raise concerns about anomalies or sudden changes in 

environmental conditions. The absence of outliers in 

this data also implies that there are no extraordinary 

factors drastically affecting air quality during the 

analyzed period. This could indicate that factors 

influencing air quality, such as pollution levels, 

weather, or human activities, are relatively stable and 

have not undergone significant changes that could 

cause air quality to fall outside the normal range. 

However, to obtain a more comprehensive and 

thorough understanding of air quality, it is important to 

consider additional information such as specific time 

periods, measurement locations, and external factors 

that may affect air quality during that time. For 

example, knowing whether the analyzed period 

includes certain seasons or special events like wildfires 

or increased industrial activity can provide richer 

context for interpreting this data. In conclusion, the 

presented box plot indicates that air quality during the 

specified time period is within a fairly consistent and 

predictable range, with most data concentrated between 

values of 105 and 160, and a median around 140. The 

absence of outliers suggests that the data is stable, 

without significant fluctuations or extreme events 

affecting air quality. This interpretation provides 

confidence that the air quality during the analyzed 

period is likely to be relatively good, although further 

analysis considering relevant context and external 

factors is still necessary. 

 

CONCLUSIONS  

This study successfully demonstrates that the 

application of classification techniques, particularly 

Random Forest, is effective in identifying 

infrastructure development priorities within a smart 

city context. By analyzing various variables such as 

population density, energy demand, and traffic 

congestion, this research provides a comprehensive 

overview of areas requiring more focus in 

infrastructure management. The classification 

technique employed is capable of processing complex 

data and generating reliable predictive models. The 

findings of this study are expected to assist city 

governments in making more accurate and efficient 

decisions regarding infrastructure resource allocation. 

Future studies could expand this research by 

integrating additional data sources, such as real-time 

data from IoT devices, to improve prediction accuracy. 

Exploring other machine learning techniques, such as 

Gradient Boosting Machines or Neural Networks, may 

provide comparative insights and enhance model 

performance. Adapting the model for different types of 

cities is also crucial for testing its scalability. 

Longitudinal studies could help understand how 

infrastructure priorities change over time. Public 

sentiment analysis and cost-benefit analysis integration 

could offer a more inclusive perspective.  
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