Learning Difficulty Levels Prediction of Elementary School Student Mathematics Using Machine Learning Model

Authors

  • Rismayani Rismayani Universitas Dipa Makassar https://orcid.org/0000-0002-9716-2131
  • Novita Sambo Layuk Universitas Dipa Makassar
  • Madyana Patasik Universitas Dipa Makassar
  • Andi Hutami Endang Institut Teknologi dan Bisnis Kalla, Indonesia

DOI:

https://doi.org/10.56873/jitu.8.1.5906

Keywords:

Mathematics Learning, KNN (K-Nearest Neighbors) Model, Difficulty Level Prediction, Educational Intervention

Abstract

Difficulty learning mathematics in elementary school students is a significant problem and requires serious attention. This study aims to predict the difficulty level in elementary school students learning mathematics using a machine learning model, namely KNN. Exam scores, assignments, quizzes, and characteristics of students' difficulty level in learning mathematics were used as data in this study. A study used the KNN model to divide students into three categories of difficulty in learning mathematics: easy, moderate, and challenging. The results showed that the KNN model can accurately predict student’s difficulty levels in mathematics. Thus, applying this model can help teachers provide appropriate and effective interventions to students experiencing difficulties. Using machine learning technology, especially the KNN model, we found an accuracy of 95%. In addition, we can still accurately predict the difficulty level of elementary school students' mathematics learning. This study uses anonymous student data, the distribution of assignments, quizzes, and exam score ranges, and characteristics of mathematics learning difficulty levels. There are three prediction classes: high, medium, and low.

Author Biographies

  • Rismayani Rismayani, Universitas Dipa Makassar

    Sistem Informasi

     

  • Novita Sambo Layuk, Universitas Dipa Makassar

    Informatics Management

  • Madyana Patasik, Universitas Dipa Makassar

    Informatics

References

[1] Ernawati et al., Problematika Pembelajaran Matematika. Yayasan Penerbit Muhammad Zaini, 2021.

[2] Isrok’atun and A. Rosmala, Model-Model Pembelajaran Matematika. Bumi Aksara, 2021.

[3] Z. Ardi et al., “Exploring the elementary students learning difficulties risks on mathematics based on students mathematic anxiety, mathematics self-efficacy and value beliefs using rasch measurement,” J. Phys. Conf. Ser., vol. 1157, no. 3, p. 032095, Feb. 2019, doi: 10.1088/1742-6596/1157/3/032095.

[4] M. Yusuf Setia Wardana and Aries Tika Damayani, “Persepsi Siswa terhadap Pembelajaran Pecahan di Sekolah Dasar,” ResearchGate, Oct. 2024, doi: 10.31980/mosharafa.v6i3.333.

[5] S. Susanti et al., Desain Media Pembelajaran SD/MI. Yayasan Penerbit Muhammad Zaini, 2022.

[6] J. L. Harvey and S. A. P. Kumar, “A Practical Model for Educators to Predict Student Performance in K-12 Education using Machine Learning,” in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Dec. 2019, pp. 3004–3011. doi: 10.1109/SSCI44817.2019.9003147.

[7] G. S. Sidik and A. A. Wakih, “Kesulitan Belajar Matematik Siswa Sekolah Dasar pada Operasi Hitung Bilangan Bulat,” Nat. J. Kaji. Dan Penelit. Pendidik. Dan Pembelajaran, vol. 4, no. 1, pp. 461–470, 2019, doi: 10.35568/naturalistic.v4i1.633.

[8] M. Anggriyani, M. Mahsup, S. Sirajuddin, and S. Syaharuddin, “Pembelajaran Estafet Learning dengan Kemampuan Numerik untuk Meningkatkan Motivasi dan Hasil Belajar Siswa,” Semin. Nas. Paedagoria, vol. 4, no. 1, pp. 443–452, Aug. 2024.

[9] A. H. Anna Zili, “Prediksi Kelulusan Siswa pada Mata Pelajaran Matematika menggunakan Educational Data Mining,” J. Ris. Pembelajaran Mat. Sekol., vol. 7, no. 1, Mar. 2023, doi: 10.21009/jrpms.071.03.

[10] A. Patrisyah, R. Buaton, and J. N. Sitompul, “Klasifikasi Tingkat Pemahaman Siswa pada Pelajaran Matematika di MTSS PAB 5 Klambir Lima,” Saturnus J. Teknol. Dan Sist. Inf., vol. 2, no. 4, pp. 146–156, Aug. 2024, doi: 10.61132/saturnus.v2i4.345.

[11] C. Chazar and M. H. Rafsanjani, “Penerapan Teachable Machine Pada Klasifikasi Machine Learning Untuk Identifikasi Bibit Tanaman,” Pros. Semin. Nas. Inov. Dan Adopsi Teknol. INOTEK, vol. 2, no. 1, pp. 32–40, May 2022, doi: 10.35969/inotek.v2i1.207.

[12] A. K. Sari, A. Irsyad, D. N. Aini, Islamiyah, and S. E. Ginting, “Analisis Sentimen Twitter Menggunakan Machine Learning untuk Identifikasi Konten Negatif,” Adopsi Teknol. Dan Sist. Inf. ATASI, vol. 3, no. 1, Art. no. 1, Jun. 2024, doi: 10.30872/atasi.v3i1.1373.

[13] Rismayani, S. R. D. Rachman, S. Wahyuni, Asmanurhidayani, J. Y. Mambu, and M. Pineng, “Implementation Artificial Neural Network on Identification System of Neurological Disorder,” in Intelligent Communication Technologies and Virtual Mobile Networks, G. Rajakumar, K.-L. Du, and Á. Rocha, Eds., Singapore: Springer Nature, 2023, pp. 619–629. doi: 10.1007/978-981-99-1767-9_45.

[14] R. Rismayani, M. Pineng, and H. Herlinda, “Using Artificial Neural Network for System Education Eye Disease Recognition Web-Based,” J. Biomim. Biomater. Biomed. Eng., vol. 55, pp. 262–274, 2022, doi: 10.4028/p-7z9xpt.

[15] N. H. Sutanto, E. Utami, and R. Rismayani, “Systematic Literature Review untuk Identifikasi Metode Evaluasi Website Layanan Pendidikan di Indonesia,” J. Ilm. IT CIDA, vol. 7, no. 1, Art. no. 1, Jun. 2021, doi: 10.55635/jic.v7i1.133.

[16] R. Aprilian, R. Habibi, and M. Y. H. Setyawan, Algoritma KNN dalam memprediksi cuaca untuk menentukan tanaman yang cocok sesuai musim. Kreatif, 2020.

[17] H. Sunandar, “Penggunaan Model Klaster K-Means Dan Klasifikasi KNN Untuk Identifikasi Pengetahuan Matematika Mahasiswa,” KAKIFIKOM Kumpul. Artik. Karya Ilm. Fak. Ilmu Komput., pp. 75–85, Apr. 2024.

[18] D. Kartikasari and I. K. D. Nuryana, “Analisis Prediksi Pengalaman Pengguna Aplikasi MELISA menggunakan Metode SVM dan KNN,” J. Emerg. Inf. Syst. Bus. Intell. JEISBI, vol. 4, no. 4, pp. 72–78, Sep. 2023.

[19] T. Telutci and R. Harman, “Penerapan Data Mining untuk Memprediksi Prestasi Siswa Sekolah Dasar Menggunakan Algoritma C4.5,” Comput. Based Inf. Syst. J., vol. 12, no. 1, Art. no. 1, Mar. 2024, doi: 10.33884/cbis.v12i1.8207.

[20] S. D. Ariyanto and L. A. Wulandhari, “Prediksi Kinerja Calon Mahasiswa Berdasarkan Nilai Seleksi Masuk Menggunakan Pendekatan Machine Learning,” J. Ilm. Komputasi, vol. 23, no. 2, Art. no. 2, Jun. 2024, doi: 10.32409/jikstik.23.2.3589.

Downloads

Published

2025-06-21

Issue

Section

Artikel

How to Cite

Learning Difficulty Levels Prediction of Elementary School Student Mathematics Using Machine Learning Model. (2025). Journal of Information Technology and Its Utilization, 8(1), 1-9. https://doi.org/10.56873/jitu.8.1.5906

Similar Articles

1-10 of 39

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)