Traffic Signs Detection System Based on You Only Look Once (Yolov8) using Raspberry Pi

Main Article Content

Putri Mawaring Wening
Jans Hendry
Ardhi Wicaksono Santoso

Abstract

Autonomous vehicle (AV) is projected to become a part of land transportation in the New Capital City of Nusantara (IKN). . This opens up opportunities for related research to be conducted prior to actual implementation.. One of the capabilities of AV is recognizing different types of traffic signs. Therefore, this study aims to design a traffic sign detection system as an insight and support for the implementation of autonomous vehicles in IKN Nusantara. To achieve this, a total of 11,157 images containing 30 types of traffic signs were collected as the primary dataset along the roads of the Special Region of Yogyakarta.  Variations of the dataset were also added in the form of noise, blur, and dark. During the model training, hyper-parameter configurations such as learning rate, epoch, and image size were performed. In this study, the You Only Look Once v8 method is used. The results of testing with daytime data showed an accuracy of 80%, recall of 83%, and precision of 96%. In contrast, tests with night data showed 93% precision, 70% recall, and 67% accuracy. This test works well for cars moving at speeds below than 40 km/h because of the Raspberry Pi hardware's computing speed constraints

Article Details

Section
Informatics

References

Auliya, A., Pradani, W., & Haryanto, T. (2022). Kenaf Flower Detection using YOLOv3. 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS), 269–272. https://doi.org/10.1109/AiDAS56890.2022.9918691

DVDVideoSoft. (2023). Vide to JPG Converter. https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm

Google. (n.d.). Google Colaboratory. Retrieved August 15, 2023, from https://colab.google

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., & Murphy, K. (2017). Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3296–3297. https://doi.org/10.1109/CVPR.2017.351

Lavanya, G., & Pande, S. D. (2023). Enhancing Real-time Object Detection with YOLO Algorithm. EAI Endorsed Transactions on Internet of Things, 10, 1–9. https://doi.org/10.4108/eetiot.4541

Mishkin, D. (n.d.). Models accuracy on imagenet 2012 val. Https://Github.Com/BVLC/Caffe/Wiki/Models-Accuracy-on-ImageNet-2012-Val. Retrieved April 30, 2024, from https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val

Nacir, O., Amna, M., Imen, W., & Hamdi, B. (2022). Yolo V5 for Traffic Sign Recognition and Detection Using Transfer Learning. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 1–4. https://doi.org/10.1109/CISTEM55808.2022.10044022

Nugroho, A. A., Wijaya, W., Hendry, J., & Sumanto, B. (2022). Seleksi Fitur Aroma Teh Kombucha menggunakan ANN untuk Optimasi Kinerja Sistem E-nose. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(2), 334. https://doi.org/10.26760/elkomika.v10i2.334

QT Designer. (n.d.). QT Designer. Retrieved August 15, 2023, from https://doc.qt.io

Redmon, J. (n.d.). Darknet: Open source neural networks in C. Http://Pjreddie.Com/Darknet/. Retrieved August 22, 2024, from http://pjreddie.com/darknet/

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. Computer Vision and Pattern Recognition. http://arxiv.org/abs/1506.02640

Roboflow. (n.d.). Vision Models with Roboflow. Https://Roboflow.Com. Retrieved August 8, 2023, from https://roboflow.com

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Saptohutomo, A. P. (2022). Korlantas Polri Catat 94.617 Kecelakaan pada Januari-September 2022. https://nasional.kompas.com/read/2022/11/20/15200561/korlantas-polri-catat-94617-kecelakaan-pada-januari-september-2022

Saputra, D. (2022). Setelah BSD, Ambisi Kendaraan Otonom akan Dibawa Juga ke IKN Nusantara. https://ekonomi.bisnis.com/read/20220521/98/1535416/setelah-bsd-ambisi-kendaraan-otonom-akan-dibawa-juga-ke-ikn-nusantara

Sumanto, B., Java, D. R., Wijaya, W., & Hendry, J. (2022). Seleksi Fitur Terhadap Performa Kinerja Sistem E-Nose untuk Klasifikasi Aroma Kopi Gayo. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(2), 429–438. https://doi.org/10.30812/matrik.v21i2.1495

Thonny. (n.d.). Python IDE. Retrieved August 15, 2023, from https://thonny.org

Wang, C., Guo, J., Wang, S., Wu, Q., Wang, S., & Wu, R. (2022). Research on Gesture Recognition Algorithm Based on Lightweight YOLOv4. 2022 2nd International Conference on Computation, Communication and Engineering (ICCCE), 74–78. https://doi.org/10.1109/ICCCE55785.2022.10036237

Yang, G., Wang, J., Nie, Z., Yang, H., & Yu, S. (2023). A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention. Agronomy, 13(7), 1824. https://doi.org/10.3390/agronomy13071824

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061

Yung, N. D. T., Wong, W. K., Juwono, F. H., & Sim, Z. A. (2022). Safety Helmet Detection Using Deep Learning: Implementation and Comparative Study Using YOLOv5, YOLOv6, and YOLOv7. 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 164–170. https://doi.org/10.1109/GECOST55694.2022.10010490