Sistem Deteksi Rambu Lalu Lintas Berbasis You Only Look Once (Yolov8) Menggunakan Rasberry Pi

Isi Artikel Utama

Putri Mawaring Wening
Jans Hendry
Ardhi Wicaksono Santoso

Abstrak

Kendaraaan autonomous vehicle (AV) direncanakan mewarnai alat transportasi darat di Ibu Kota Nusantara (IKN). Hal ini membuka kemungkinan penelitian–penelitian terkait sebelum implementasi benar–benar dilakukan. Salah satu kemampuan yang dimiliki oleh AV adalah mengenali jenis dari rambu lalu lintas. Untuk itu, penelitian ini bertujuan untuk merancang sistem deteksi rambu lalu lintas sebagai wawasan dan dukungan penerapan autonomous vehicle di IKN Nusantara. Untuk itu, sebanyak 11.157 citra yang berisi 30 jenis rambu lalu lintas sebagai dataset primer telah diambil di sepanjang jalan Daerah Istimewa Yogyakarta. Ditambahkan juga variasi dataset berupa penambahan noise, blur, dan dark. Pada training model dilakukan konfigurasi hyper-parameter berupa learning rate, epoch, dan ukuran citra. Penelitian ini menggunakan algoritma You Only Look Once v8. Pengujian menggunakan data siang menghasilkan precision 96%, recall 83%, dan accuracy 80%. Sedangkan, pengujian menggunakan data malam menghasilkan precision 93%, recall 70%, dan accuracy 67%. Pengujian ini efektif untuk kendaraan bergerak dengan kecepatan di bawah 40 km/jam karena keterbatasan kecepatan komputasi perangkat keras Raspberry Pi

Rincian Artikel

Bagian
Informatika

Referensi

Auliya, A., Pradani, W., & Haryanto, T. (2022). Kenaf Flower Detection using YOLOv3. 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS), 269–272. https://doi.org/10.1109/AiDAS56890.2022.9918691

DVDVideoSoft. (2023). Vide to JPG Converter. https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm

Google. (n.d.). Google Colaboratory. Retrieved August 15, 2023, from https://colab.google

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., & Murphy, K. (2017). Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3296–3297. https://doi.org/10.1109/CVPR.2017.351

Lavanya, G., & Pande, S. D. (2023). Enhancing Real-time Object Detection with YOLO Algorithm. EAI Endorsed Transactions on Internet of Things, 10, 1–9. https://doi.org/10.4108/eetiot.4541

Mishkin, D. (n.d.). Models accuracy on imagenet 2012 val. Https://Github.Com/BVLC/Caffe/Wiki/Models-Accuracy-on-ImageNet-2012-Val. Retrieved April 30, 2024, from https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val

Nacir, O., Amna, M., Imen, W., & Hamdi, B. (2022). Yolo V5 for Traffic Sign Recognition and Detection Using Transfer Learning. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 1–4. https://doi.org/10.1109/CISTEM55808.2022.10044022

Nugroho, A. A., Wijaya, W., Hendry, J., & Sumanto, B. (2022). Seleksi Fitur Aroma Teh Kombucha menggunakan ANN untuk Optimasi Kinerja Sistem E-nose. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(2), 334. https://doi.org/10.26760/elkomika.v10i2.334

QT Designer. (n.d.). QT Designer. Retrieved August 15, 2023, from https://doc.qt.io

Redmon, J. (n.d.). Darknet: Open source neural networks in C. Http://Pjreddie.Com/Darknet/. Retrieved August 22, 2024, from http://pjreddie.com/darknet/

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. Computer Vision and Pattern Recognition. http://arxiv.org/abs/1506.02640

Roboflow. (n.d.). Vision Models with Roboflow. Https://Roboflow.Com. Retrieved August 8, 2023, from https://roboflow.com

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Saptohutomo, A. P. (2022). Korlantas Polri Catat 94.617 Kecelakaan pada Januari-September 2022. https://nasional.kompas.com/read/2022/11/20/15200561/korlantas-polri-catat-94617-kecelakaan-pada-januari-september-2022

Saputra, D. (2022). Setelah BSD, Ambisi Kendaraan Otonom akan Dibawa Juga ke IKN Nusantara. https://ekonomi.bisnis.com/read/20220521/98/1535416/setelah-bsd-ambisi-kendaraan-otonom-akan-dibawa-juga-ke-ikn-nusantara

Sumanto, B., Java, D. R., Wijaya, W., & Hendry, J. (2022). Seleksi Fitur Terhadap Performa Kinerja Sistem E-Nose untuk Klasifikasi Aroma Kopi Gayo. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(2), 429–438. https://doi.org/10.30812/matrik.v21i2.1495

Thonny. (n.d.). Python IDE. Retrieved August 15, 2023, from https://thonny.org

Wang, C., Guo, J., Wang, S., Wu, Q., Wang, S., & Wu, R. (2022). Research on Gesture Recognition Algorithm Based on Lightweight YOLOv4. 2022 2nd International Conference on Computation, Communication and Engineering (ICCCE), 74–78. https://doi.org/10.1109/ICCCE55785.2022.10036237

Yang, G., Wang, J., Nie, Z., Yang, H., & Yu, S. (2023). A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention. Agronomy, 13(7), 1824. https://doi.org/10.3390/agronomy13071824

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061

Yung, N. D. T., Wong, W. K., Juwono, F. H., & Sim, Z. A. (2022). Safety Helmet Detection Using Deep Learning: Implementation and Comparative Study Using YOLOv5, YOLOv6, and YOLOv7. 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 164–170. https://doi.org/10.1109/GECOST55694.2022.10010490