Implementation of Genetic Algorithm for Teenager Nutrition Management

Main Article Content

Joy Christian Polla
Debby Paseru
Steven Pandelaki

Abstract

Adolescence is an important moment in human life marked by growth, emotional, and psychosocial. During adolescence, a healthy diet becomes very crucial to support adolescent development and prevent future health problems. Therefore, this study aims to implement the Genetic Algorithm for Teenager Nutrition Management in an expert system. This system is designed to provide recommendations for food menus that are in accordance with the nutritional needs of a teenager, which include protein, carbohydrates, energy/calories, and fat. Genetic algorithms are used so that the food recommendation process can be in accordance with the daily nutritional needs of teenagers. The variables in this study are age, gender, weight, height, and physical activity. Meanwhile, the results of this system are in the form of total energy or calorie needs, protein, fat, and carbohydrates included in the daily food menu according to the nutritional needs of teenagers. This system can provide daily food menu recommendations in the form of a menu list using a genetic algorithm. The best fitness value is 0.0098 at a generation size of 100 and 670 dataset of food

Article Details

Section
Informatics

References

A’yun, A. Q. (2022, Juli 21). Implementasi Algoritma Genetika dalam Optimasi Menu Makanan berdasarkan Jumlah Kalori dan Kanduangannya. Retrieved September 2, 2024, from https://www.researchgate.net/publication/362156628_IMPLEMENTASI_ALGORITMA_GENETIKA_DALAM_OPTIMASI_MENU_MAKANAN_BERDASARKAN_JUMLAH_KALORI_DAN_KANDUNGANNYA

Asiah, N., Musyrifah, & Zulkarnaim, N. (April 2024). Implementasi Algoritma Genetika dalam Rekomendasi Makanan untuk Penderita Obesitas. JITET (Jurnal Informatika dan Teknik Elektro Terapan), 12(2), 819-828.

García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining, Vo. 72. Deutschland GmbH: Springer Science and Business Media.

Gropper, S., Smith, J., & Carr, T. (2019). Advanced Nutrition and Human, 9th ed., vol. 1. Boston, MA, USA: Cengage Learning.

Hasyir, J. (2019 (Skripsi)). Implementasi Algoritma Genetika untuk Optimasi Komposisi Makanan bagi Penderita Kanker Limfoma. Riau: Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau.

Koletzko, B., Goudoever, V., & Allan, W. (2020). Pediatric Nutrition in Practice 6th ed., vol. 1. Basel, Switzerland: Karger.

Putri , V. Y., Rani, D. A., Ramadani, D. A., Arrahman, A. R., Nugroho, W. B., Afidah, N. H., . . . Puspitasari, T. D. (2019). Pengaturan Menu Makan Harian Bagi Kesehatan Balita Menggunakan Algoritma Genetika. SIMETRIS, 10(2), 787-794.

RI, R.-K. (2020, Januari 24). https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/gizi-saat-remaja-tentukan-kualitas-keturunan. Retrieved September 2, 2024, from https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/gizi-saat-remaja-tentukan-kualitas-keturunan

Rizaty, M. A. (2022, Maret 25). Databoks. Retrieved September 2, 2024, from https://databoks.katadata.co.id/datapublish/2022/03/25/12193-desa-di-indonesia-miliki-penduduk-yang-kekurangan-gizi-provinsi-mana-yang-terbanyak#:~:text=Dari%20jumlah%20tersebut%2C%20Nusa%20Tenggara,1.418%20desa%20dan%201.361%20desa.

Sari, P. R., Cholissodin, I., & Rahayudi, B. (2021). Optimasi Gizi Bahan Makanan pada Anak – Anak untuk Tumbuh Kembang menggunakan Algoritma Genetika (Studi Kasus : Dinas Kesehatan Kabupaten Kediri) . Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(12), 5429-5436 .

SCRUMstudy.com. (2024). Phases and Processes in Scrum Project. Retrieved September 2, 2024, from https://www.scrumstudy.com/whyscrum/scrum-phases-and-processes

WHO. (2024, -- --). Adolescent health. (WHO) Retrieved September 2, 2024, from https://www.who.int/health-topics/adolescent-health#tab=tab_1

Yuliastuti, G. E., Kurniawan, M., & Aditya, F. P. (Maret 2024). ptimasi Kombinasi Menu Makanan Diet Zone Menggunakan Algoritma Genetika. TEKNIKA, 15(1), 18-26.