Implementation of Genetic Algorithm for Teenager Nutrition Management
Main Article Content
Abstract
Adolescence is an important moment in human life marked by growth, emotional, and psychosocial. During adolescence, a healthy diet becomes very crucial to support adolescent development and prevent future health problems. Therefore, this study aims to implement the Genetic Algorithm for Teenager Nutrition Management in an expert system. This system is designed to provide recommendations for food menus that are in accordance with the nutritional needs of a teenager, which include protein, carbohydrates, energy/calories, and fat. Genetic algorithms are used so that the food recommendation process can be in accordance with the daily nutritional needs of teenagers. The variables in this study are age, gender, weight, height, and physical activity. Meanwhile, the results of this system are in the form of total energy or calorie needs, protein, fat, and carbohydrates included in the daily food menu according to the nutritional needs of teenagers. This system can provide daily food menu recommendations in the form of a menu list using a genetic algorithm. The best fitness value is 0.0098 at a generation size of 100 and 670 dataset of food
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
A’yun, A. Q. (2022, Juli 21). Implementasi Algoritma Genetika dalam Optimasi Menu Makanan berdasarkan Jumlah Kalori dan Kanduangannya. Retrieved September 2, 2024, from https://www.researchgate.net/publication/362156628_IMPLEMENTASI_ALGORITMA_GENETIKA_DALAM_OPTIMASI_MENU_MAKANAN_BERDASARKAN_JUMLAH_KALORI_DAN_KANDUNGANNYA
Asiah, N., Musyrifah, & Zulkarnaim, N. (April 2024). Implementasi Algoritma Genetika dalam Rekomendasi Makanan untuk Penderita Obesitas. JITET (Jurnal Informatika dan Teknik Elektro Terapan), 12(2), 819-828.
García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining, Vo. 72. Deutschland GmbH: Springer Science and Business Media.
Gropper, S., Smith, J., & Carr, T. (2019). Advanced Nutrition and Human, 9th ed., vol. 1. Boston, MA, USA: Cengage Learning.
Hasyir, J. (2019 (Skripsi)). Implementasi Algoritma Genetika untuk Optimasi Komposisi Makanan bagi Penderita Kanker Limfoma. Riau: Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau.
Koletzko, B., Goudoever, V., & Allan, W. (2020). Pediatric Nutrition in Practice 6th ed., vol. 1. Basel, Switzerland: Karger.
Putri , V. Y., Rani, D. A., Ramadani, D. A., Arrahman, A. R., Nugroho, W. B., Afidah, N. H., . . . Puspitasari, T. D. (2019). Pengaturan Menu Makan Harian Bagi Kesehatan Balita Menggunakan Algoritma Genetika. SIMETRIS, 10(2), 787-794.
RI, R.-K. (2020, Januari 24). https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/gizi-saat-remaja-tentukan-kualitas-keturunan. Retrieved September 2, 2024, from https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/gizi-saat-remaja-tentukan-kualitas-keturunan
Rizaty, M. A. (2022, Maret 25). Databoks. Retrieved September 2, 2024, from https://databoks.katadata.co.id/datapublish/2022/03/25/12193-desa-di-indonesia-miliki-penduduk-yang-kekurangan-gizi-provinsi-mana-yang-terbanyak#:~:text=Dari%20jumlah%20tersebut%2C%20Nusa%20Tenggara,1.418%20desa%20dan%201.361%20desa.
Sari, P. R., Cholissodin, I., & Rahayudi, B. (2021). Optimasi Gizi Bahan Makanan pada Anak – Anak untuk Tumbuh Kembang menggunakan Algoritma Genetika (Studi Kasus : Dinas Kesehatan Kabupaten Kediri) . Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(12), 5429-5436 .
SCRUMstudy.com. (2024). Phases and Processes in Scrum Project. Retrieved September 2, 2024, from https://www.scrumstudy.com/whyscrum/scrum-phases-and-processes
WHO. (2024, -- --). Adolescent health. (WHO) Retrieved September 2, 2024, from https://www.who.int/health-topics/adolescent-health#tab=tab_1
Yuliastuti, G. E., Kurniawan, M., & Aditya, F. P. (Maret 2024). ptimasi Kombinasi Menu Makanan Diet Zone Menggunakan Algoritma Genetika. TEKNIKA, 15(1), 18-26.