Prediksi Prevalensi Stunting Balita dengan Pendekatan Algoritma Support Vector Machine dan Synthetic Minority Oversampling Technique (SMOTE)
Isi Artikel Utama
Abstrak
Stunting pada balita merupakan sebuah status pada balita yang memiliki kekurangan gizi, data yang diusulkan sejumlah 6.879 data balita, hal ini tentu akan lebih komplek bila tidak diketahui informasi terhadap data awal pada balita, dimana data tersebut sebelum diimplementasikan pada algoritma machine learning harus melalui preprocessing dan penyeimbangan data. Dalam prediksi prevalensi stunting pada balita ini menggunakan algoritma machine learning yaitu Support Vector Machine (SVM) dengan metode supervised learning dan synthetic minority oversampling technique (SMOTE) sebagai penyeimbang data serta exploratory data analysis (EDA) sebagai metode preprocessing terhadap dataset balita. Dari hasil implementasi penelitian ini diperoleh sebuah akurasi untuk prediksi sebesar 94%, terdiri dari accuracy 94%, precision 95%, recall 94%, dan F1-score 94%.
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Kebijakan yang diajukan untuk jurnal yang menawarkan akses terbuka
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
Referensi
Amanda, R., & Negara, E. S. (2020). Analysis and Implementation Machine Learning for YouTube Data Classification by Comparing the Performance of Classification Algorithms. Jurnal Online Informatika, 5(1), 61–72. https://doi.org/10.15575/join.v5i1.505
Austin, R. R., Mathiason, M. A., & Monsen, K. A. (2022). Using data visualization to detect patterns in whole-person health data. Research in Nursing and Health, 45(4), 466–476. https://doi.org/10.1002/nur.22248
Barros, M. T., Siljak, H., Mullen, P., Papadias, C., Hyttinen, J., & Marchetti, N. (2022). Objective Supervised Machine Learning-Based Classification and Inference of Biological Neuronal Networks. Molecules, 27(19), 1–23. https://doi.org/10.3390/molecules27196256
Bharti, Gill, N. S., & Gulia, P. (2023). Exploring machine learning techniques for fake profile detection in online social networks. International Journal of Electrical and Computer Engineering, 13(3), 2962–2971. https://doi.org/10.11591/ijece.v13i3.pp2962-2971
Booeshaghi, A. S., Sullivan, D. K., & Pachter, L. (2023). Universal preprocessing of single-cell genomics data. BioRxiv, 2023.09.14.543267. https://www.biorxiv.org/content/10.1101/2023.09.14.543267v1%0Ahttps://www.biorxiv.org/content/10.1101/2023.09.14.543267v1.abstract
Doshi, N., Gundam, S., & Chaudhury, B. (2021). Strategizing University Rank Improvement using Interpretable Machine Learning and Data Visualization. http://arxiv.org/abs/2110.09050
Dritsas, E., & Trigka, M. (2023). Supervised Machine Learning Models to Identify Early-Stage Symptoms of SARS-CoV-2. Sensors, 23(1). https://doi.org/10.3390/s23010040
Erol, G., Uzbaş, B., Yücelbaş, C., & Yücelbaş, Ş. (2022). Analyzing the effect of data preprocessing techniques using machine learning algorithms on the diagnosis of COVID-19. Concurrency and Computation: Practice and Experience, 34(28), 1–16. https://doi.org/10.1002/cpe.7393
Indrakumari, R., Poongodi, T., & Jena, S. R. (2020). Heart Disease Prediction using Exploratory Data Analysis. Procedia Computer Science, 173(2019), 130–139. https://doi.org/10.1016/j.procs.2020.06.017
Kong, X., Ravikumar, V., Mulpuru, S. K., Roukoz, H., & Tolkacheva, E. G. (2023). A Data-Driven Preprocessing Framework for Atrial Fibrillation Intracardiac Electrocardiogram Analysis. Entropy, 25(2), 1–15. https://doi.org/10.3390/e25020332
Laengsri, V., Shoombuatong, W., Adirojananon, W., Nantasenamart, C., Prachayasittikul, V., & Nuchnoi, P. (2019). ThalPred: A web-based prediction tool for discriminating thalassemia trait and iron deficiency anemia. BMC Medical Informatics and Decision Making, 19(1), 1–14. https://doi.org/10.1186/s12911-019-0929-2
Malau, C. G. M., Sholihah, B., & Salim, A. (2023). Visualisasi Data Pembelian Barang dan Jasa Pada PT. Transcoal Pacific Menggunakan Exploratory Data Analysis. Intelmatics, 3(1), 7–12. https://doi.org/10.25105/itm.v3i1.16302
Mayasari, R., Nugraha, B., Juwita, A. R., & Heryana, N. (2023). Analisis Produktifitas Padi di Pulau Sumatera menggunakan Exploratory Data Analysis ( EDA ). Jurnal Elektronik Sistem Informasi Unsika, 1(1), 17–24.
Muhajir, M., & Widiastuti, J. (2022). Random Forest Method Approach to Customer Classification Based on Non-Performing Loan in Micro Business. Jurnal Online Informatika, 7(2), 177–183. https://doi.org/10.15575/join.v7i2.842
Mustaqim, M., Warsito, B., & Surarso, B. (2019). Kombinasi Synthetic Minority Oversampling Technique (SMOTE) dan Neural Network Backpropagation untuk menangani data tidak seimbang pada prediksi pemakaian alat kontrasepsi implan. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 5(2), 128. https://doi.org/10.26594/register.v5i2.1705
Nadhiroh, S. R., Riyanto, E. D., & Salsabil, I. S. (2022). Potensi Balita Risiko Stunting dan Hubungannya dengan Keluarga Pra-Sejahtera di Jawa Timur : Analisis Data PK-21. 1, 112–119.
Nofriani, N. (2019). Comparations of Supervised Machine Learning Techniques in Predicting the Classification of the Household’s Welfare Status. Journal Pekommas, 4(1), 43. https://doi.org/10.30818/jpkm.2019.2040105
Pohan, H., Zarlis, M., Irawan, E., Okprana, H., & Pranayama, Y. (2021). Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia. JUKI : Jurnal Komputer Dan Informatika, 3(2), 97–104. https://doi.org/10.53842/juki.v3i2.69
Siambaton, M. Z., & Husein, A. M. (2022). Menganalisis Data Kesehatan Global : Pendekatan Analisis Data Eksplorasi Visual. Data Sciences Indonesia (DSI), 1(2), 41–49. https://doi.org/10.47709/dsi.v1i2.1315
Syahruddin, A. N., & Sari, N. P. (2023). Water Sanitation and Hygiene ( WASH ) and feeding patterns : Linkages with stunting among children aged 6-23 months Water Sanitation and Hygiene ( WASH ) dan pola pemberian makan : Hubungannya dengan stunting pada anak usia 6-23 bulan Abstrak. 8(3), 466–477.
Tiwari, S. (2022). Supervised Machine Learning: A Brief Introduction. Proceedings of the International Conference on Virtual Learning, 17(5), 219–230. https://doi.org/10.58503/icvl-v17y202218
Torres-Martos, Á., Bustos-Aibar, M., Ramírez-Mena, A., Cámara-Sánchez, S., Anguita-Ruiz, A., Alcalá, R., Aguilera, C. M., & Alcalá-Fdez, J. (2023). Omics Data Preprocessing for Machine Learning: A Case Study in Childhood Obesity. Genes, 14(2). https://doi.org/10.3390/genes14020248
Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16. https://doi.org/10.1186/s12911-019-1004-8
Wibowo, A. (2022). Analisa Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis Pada PT. Telkominfra. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(3), 2292–2304. https://doi.org/10.35957/jatisi.v9i3.2737
Wittek, N., Wittek, K., Keibel, C., & Güntürkün, O. (2023). Supervised machine learning aided behavior classification in pigeons. Behavior Research Methods, 55(4), 1624–1640. https://doi.org/10.3758/s13428-022-01881-w