Analisis dan Mitigasi Kerentanan DDoS pada Infrastuktur Jaringan dengan Teknik Hierarchical Clustering dan Firewall IPTables
Isi Artikel Utama
Abstrak
Keamanan infrastruktur jaringan termasuk perangkat router dan server, yang terhubung langsung ke global internet telah menjadi masalah penting seiring dengan meningkatnya komunikasi internet dalam menjaga kerahasiaan, integritas dan ketersediaan komunikasi digital. Masalah paling krusial merupakan infrastruktur jaringan untuk monokultur perangkat router dan server yang diekspolitasi dan mendeteksi serangan Distributed Denial-of-Service (DDoS). Penelitian ini bertujuan menggabungkan teknik analisis dan mitigasi dengan Hierarchical Clustering single linkage, complete linkage, average linkage dan ward linkage serta tindakan mitigasi filtering firewall IPTables, untuk menganalisis data logging DDoS pada suricata NIDS, dengan severity level low, medium dan high yang dieksploitasi dari jaringan public. Pengelompokan penyebaran single linkage menghasilkan cluster 3 dengan tingkat intensitas logging DDoS dengan severity high, pada tipe protocol TCP Sync Flood. Cluster 3 menghasilkan severity high source IP address. Clustering complete linkage menghasilkan potensi high logging DDoS, terdapat pada cluster 1 dan cluster 2. Hasil penyebaran average linkage menunjukkan kelompok dengan severity level average low untuk DDoS. Teknik Ward linkage menghasilkan kelompok yang lebih seragam pada atribut pada setiap n_clusters 1 sampai cluster 6. Implementasi teknik mitigasi dengan IPSet dan firewall scripting IP Tables memberikan hasil positif dalam mengurangi beban kerja perangkat router dan vServer saat menghadapi serangan DDoS. Setelah konvergensi status running menghasilkan beban kerja dari sumber daya vCPU mengalami penuruan persentasi vCPU vR1 10%, vCPU vR2 9% dan memory 11%.
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Kebijakan yang diajukan untuk jurnal yang menawarkan akses terbuka
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
Referensi
Abdullayeva, F. J. (2022). Distributed denial of service attack detection in E-government cloud via data clustering. Array, 15(December 2021), 100229. https://doi.org/10.1016/j.array.2022.100229
Adedeji, K. B., Abu-Mahfouz, A. M., & Kurien, A. M. (2023). DDoS Attack and Detection Methods in Internet-Enabled Networks: Concept, Research Perspectives, and Challenges. Journal of Sensor and Actuator Networks, 12(4). https://doi.org/10.3390/jsan12040051
Alzahrani, R. J., & Alzahrani, A. (2021). Security analysis of ddos attacks using machine learning algorithms in networks traffic. Electronics (Switzerland), 10(23). https://doi.org/10.3390/electronics10232919
Damanik, H. A. (2022). Securing Data Network for Growing Business Vpn Architectures Cellular Network Connectivity. Acta Informatica Malaysia, 6(1), 01–06. https://doi.org/10.26480/aim.01.2022.01.06
Damanik, H. A., & Anggraeni, M. (2024). Pola Pengelompokan dan Pencegahan Public Honeypot menggunakan Teknik K-Means dan Automation Shell-Script. 12(1), 65–79.
Faiz, M. N., Somantri, O., & Muhammad, A. W. (2022). Machine Learning-Based Feature Engineering to Detect DDoS Attacks. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi |, 11(3), 176–182.
Gupta, A. (2018). Distributed Denial of Service Attack Detection Using a Machine Learning Approach. Calgary, Alberta, (April) . https://doi.org/10.11575/PRISM/32797
Haseeb-ur-rehman, R. M. A., Aman, A. H. M., Hasan, M. K., Ariffin, K. A. Z., Namoun, A., Tufail, A., & Kim, K. H. (2023). High-Speed Network DDoS Attack Detection: A Survey. Sensors, 23(15). https://doi.org/10.3390/s23156850
Huang, C., Han, J., Zhang, X., & Liu, J. (2019). Automatic identification of honeypot server using machine learning techniques. Security and Communication Networks, 2019. https://doi.org/10.1155/2019/2627608
Jasim, M. N., & Gaata, M. T. (2022). K-Means clustering-based semi-supervised for DDoS attacks classification. Bulletin of Electrical Engineering and Informatics, 11(6), 3570–3576. https://doi.org/10.11591/eei.v11i6.4353
Jose, S., Malathi, D., Reddy, B., & Jayaseeli, D. (2018). A Survey on Anomaly Based Host Intrusion Detection System. Journal of Physics: Conference Series, 1000(1). https://doi.org/10.1088/1742-6596/1000/1/012049
May, A., & Koay, Y. (2019). Detecting High and Low Intensity Distributed Denial of Service (DDoS) Attacks. 1–188.
Patel, M. (2020). Demilitarized Zone An Exceptional Layer of Network Security to Mitigate DDoS Attack. 62. https://scholar.uwindsor.ca/etd/8306
Praptodiyono, S., Firmansyah, T., Anwar, M. H., Wicaksana, C. A., Pramudyo, A. S., & Al-Allawee, A. (2023). Development of Hybrid Intrusion Detection System Based on Suricata With Pfsense Method for High Reduction of Ddos Attacks on Ipv6 Networks. Eastern-European Journal of Enterprise Technologies, 5(9(125)), 75–84. https://doi.org/10.15587/1729-4061.2023.285275
Putri, N. A., Stiawan, D., Heryanto, A., Septian, T. W., Siregar, L., & Budiarto, R. (2017). Denial of service attack visualization with clustering using K-means algorithm. ICECOS 2017 - Proceeding of 2017 International Conference on Electrical Engineering and Computer Science: Sustaining the Cultural Heritage Toward the Smart Environment for Better Future, 177–183. https://doi.org/10.1109/ICECOS.2017.8167129
Shah, S. A. R., & Issac, B. (2018). Performance comparison of intrusion detection systems and application of machine learning to Snort system. Future Generation Computer Systems, 80, 157–170. https://doi.org/10.1016/j.future.2017.10.016
She, C., Wen, W., Zheng, K., & Lyu, Y. (2016). Application-Layer DDoS Detection by K-means Algorithm. 50(Iceeecs), 75–78. https://doi.org/10.2991/iceeecs-16.2016.16
Shutaywi, M., & Kachouie, N. N. (2021). Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy, 23(6), 1–17. https://doi.org/10.3390/e23060759
Vanin, P., Newe, T., Dhirani, L. L., O’Connell, E., O’Shea, D., Lee, B., & Rao, M. (2022). A Study of Network Intrusion Detection Systems Using Artificial Intelligence/Machine Learning. Applied Sciences (Switzerland), 12(22). https://doi.org/10.3390/app122211752
Yamamoto, Y., & Yamaguchi, S. (2023). Defense Mechanism to Generate IPS Rules from Honeypot Logs and Its Application to Log4Shell Attack and Its Variants. Electronics, 12(14), 3177. https://doi.org/10.3390/electronics12143177