User Acceptance and Effectiveness of AutoML Systems in Predicting Training Success: A Case Study of the DTS Program
Isi Artikel Utama
Abstrak
The advancement of digital technologies has transformed workforce demands, emphasizing digital literacy, adaptability, and innovation. Indonesia’s Digital Talent Scholarship (DTS) program, launched in 2018, has trained over 500,000 participants in IT skills. However, completion rates vary significantly (57%–96%), highlighting challenges in participant engagement and program effectiveness. This study integrates the DeLone and McLean Information Systems Success Model and the Technology Acceptance Model (TAM) to evaluate system effectiveness and user acceptance. Variables from the DeLone model—System Quality, Information Quality, and Service Quality—were incorporated into TAM constructs, influencing Perceived Ease of Use (PEOU), Perceived Usefulness (PU), and User Satisfaction, which shape Attitude Toward Use (ATU) and Behavioral Intention (BI).
Survey data from 342 DTS administrators were analyzed using Structural Equation Modeling (SEM). Results show PEOU significantly influenced PU (path coefficient = 0.900) and ATU (0.594), while PU and ATU collectively explained 70.3% of BI. High PEOU (0.91) and PU (0.87) scores highlight the importance of system usability and utility. However, low ATU stems from organizational misalignment, as the system’s focus on participant quality contrasts with the DTS priority on participant numbers. Addressing this misalignment, enhancing system features, and improving service quality can boost adoption and foster a digitally skilled workforce aligned with Indonesia’s evolving demands.
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Kebijakan yang diajukan untuk jurnal yang menawarkan akses terbuka
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
Referensi
Al-Fraihat, D., Joy, M., Masa’deh, R., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102(June 2019), 67–86. https://doi.org/10.1016/j.chb.2019.08.004
Almaiah, M. A., Al-Khasawneh, A., & Althunibat, A. (2022). The Challenges and Factors Influencing the E-Learning System Usage During COVID-19 Pandemic. Education and Information Technologies, 1037, 287–309. https://doi.org/10.1007/978-3-030-99000-8_16
Cheok, M. L., & Wong, S. L. (2015). Predictors of E-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction, 8(1), 75–90. https://doi.org/10.12973/iji.2015.816a
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. https://doi.org/10.2307/249008
DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60–95. https://doi.org/10.1287/isre.3.1.60
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748
Fathema, N., Shannon, D., & Ross, M. (2015). Expanding The Technology Acceptance Model (TAM) to Examine Faculty Use of Learning Management Systems (LMSs) In Higher Education Institutions. Journal of Online Learning and Teaching , 11(2), 210–233.
Gefen, D., Karahanna, E., & Straub, D. W. (2016). Trust and TAM in Online Shopping: An Integrated Model. MIS Quarterly: Management Information Systems, 4(1), 1–23.
Holstein, K., Vaughan, J. W., Daumé, H., Dudík, M., & Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3290605.3300830
Major, L., Kyriacou, T., & Brereton, O. P. (2012). Systematic literature review: teaching novices programming using robots. IET Software, 6(6), 502. https://doi.org/10.1049/iet-sen.2011.0125
Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems, 2(2). https://doi.org/10.1145/1985347.1985353
Schwab, K. (2016). A “missing” family of classical orthogonal polynomials. In World Economic Forum. https://doi.org/10.1088/1751-8113/44/8/085201
Ubaldi, B., Welby, B., & Chauvet, L. (2021). The OECD Framework for Digital Talent and Skills in The Public Sector. 45, 77. https://www.voced.edu.au/content/ngv:90287
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Watson, S. (2022). Noe, R. (2017). Employee training and development . New York, NY: McGraw Hill Education. ISBN: 978‐0078112850 . Human Resource Development Quarterly, 33(2), 1–3. https://doi.org/10.1002/hrdq.21333
World Economic Forum. (2022). The future of jobs report 2020 | world economic forum. The Future of Jobs Report, October, 1163. https://www.weforum.org/reports/the-future-of-jobs-report-2020/digest