Implementasi Klasifikasi Random Forest untuk Mengidentifikasi Prioritas Infrastruktur di Kota Pintar

Isi Artikel Utama

Joni Maulindar
Juvinal Ximenes Guterres

Abstrak

Tantangan utama dalam pengembangan kota pintar adalah kesulitan dalam menentukan prioritas infrastruktur yang efektif dan efisien. Studi ini bertujuan untuk megimplementasikan teknik klasifikasi guna mengidentifikasi prioritas infrastruktur di kota pintar. Metode penelitian yang digunakan adalah eksperimental dengan algoritma klasifikasi Random Forest, dengan memanfaatkan data sekunder dari berbagai sumber terkait infrastruktur perkotaan. Hasil penelitian menunjukkan bahwa metode eksperimen dengan teknik klasifikasi mampu mengidentifikasi prioritas infrastruktur dengan tingkat akurasi yang tinggi. Analisis data tentang kepadatan penduduk, pertumbuhan ekonomi, kemacetan lalu lintas, dan variabel lainnya mengungkapkan adanya hubungan yang signifikan antara kebutuhan infrastruktur dan variabel-variabel tersebut. Model ekperimen dengan algoritma Random Forest yang dikembangkan dapat memprediksi kebutuhan infrastruktur dengan akurasi tinggi, sehingga menjadi alat yang berharga bagi pemerintah kota dalam membuat keputusan yang lebih tepat. Penerapan algoritma Random Forest ini juga menunjukkan bahwa prioritas infrastruktur yang ditetapkan sesuai dengan kebutuhan nyata di lapangan, yang pada akhirnya meningkatkan efisiensi manajemen kota pintar. Oleh karena itu, studi ini memberikan kontribusi nyata dalam mendukung pengembangan kota pintar melalui pendekatan berbasis data yang lebih efektif

Rincian Artikel

Bagian
Informatika

Referensi

J. Clement, B. Ruysschaert, and N. Crutzen, “Smart city strategies – A driver for the localization of the sustainable development goals?,” Ecol. Econ., vol. 213, p. 107941, 2023, doi: https://doi.org/10.1016/j.ecolecon.2023.107941.

M. E. E. Alahi et al., “Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends,” Sensors, vol. 23, no. 11. 2023. doi: 10.3390/s23115206.

V. D. Paes et al., “Analyzing the Challenges for Future Smart and Sustainable Cities,” Sustainability, vol. 15, no. 10. 2023. doi: 10.3390/su15107996.

M. Al-Raeei, “The smart future for sustainable development: Artificial intelligence solutions for sustainable urbanization,” Sustain. Dev., vol. n/a, no. n/a, Jul. 2024, doi: https://doi.org/10.1002/sd.3131.

R. Thottolil, U. Kumar, and T. Chakraborty, “Prediction of transportation index for urban patterns in small and medium-sized Indian cities using hybrid RidgeGAN model,” Sci. Rep., vol. 13, no. 1, p. 21863, 2023, doi: 10.1038/s41598-023-49343-3.

J. Heaton and A. K. Parlikad, “A conceptual framework for the alignment of infrastructure assets to citizen requirements within a Smart Cities framework,” Cities, vol. 90, pp. 32–41, 2019, doi: https://doi.org/10.1016/j.cities.2019.01.041.

J. I. Barredo and L. Demicheli, “Urban sustainability in developing countries’ megacities: modelling and predicting future urban growth in Lagos,” Cities, vol. 20, no. 5, pp. 297–310, 2003, doi: https://doi.org/10.1016/S0264-2751(03)00047-7.

Y. Le Gat, C. Curt, C. Werey, K. Caillaud, B. Rulleau, and F. Taillandier, “Water infrastructure asset management: state of the art and emerging research themes,” Struct. Infrastruct. Eng., pp. 1–24, doi: 10.1080/15732479.2023.2222030.

V. Vinagre, T. Fidélis, and A. Luís, “How Can We Adapt Together? Bridging Water Management and City Planning Approaches to Climate Change,” Water, vol. 15, no. 4. 2023. doi: 10.3390/w15040715.

A. Jurgilevich, A. Räsänen, and S. Juhola, “Assessing the dynamics of urban vulnerability to climate change: Case of Helsinki, Finland,” Environ. Sci. Policy, vol. 125, pp. 32–43, 2021, doi: https://doi.org/10.1016/j.envsci.2021.08.002.

K. Yussif, E. B. Dompreh, and A. Gasparatos, “Sustainability of urban expansion in Africa: a systematic literature review using the Drivers–Pressures–State–Impact–Responses (DPSIR) framework,” Sustain. Sci., vol. 18, no. 3, pp. 1459–1479, 2023, doi: 10.1007/s11625-022-01260-6.

T. H. Son, Z. Weedon, T. Yigitcanlar, T. Sanchez, J. M. Corchado, and R. Mehmood, “Algorithmic urban planning for smart and sustainable development: Systematic review of the literature,” Sustain. Cities Soc., vol. 94, p. 104562, 2023, doi: https://doi.org/10.1016/j.scs.2023.104562.

M. V Chester and B. Allenby, “Toward adaptive infrastructure: flexibility and agility in a non-stationarity age,” Sustain. Resilient Infrastruct., vol. 4, no. 4, pp. 173–191, Oct. 2019, doi: 10.1080/23789689.2017.1416846.

Y. Alshamaila, S. Papagiannidis, and H. Alsawalqah, “Smart cities in Jordan: Challenges and barriers,” Cities, vol. 154, p. 105327, 2024, doi: https://doi.org/10.1016/j.cities.2024.105327.

I. A. Hashem et al., “Urban Computing for Sustainable Smart Cities: Recent Advances, Taxonomy, and Open Research Challenges,” Sustainability, vol. 15, no. 5. 2023. doi: 10.3390/su15053916.

Z. Sun, M. Gao, A. Jiang, M. Zhang, Y. Gao, and G. Wang, “Incomplete data processing method based on the measurement of missing rate and abnormal degree: Take the loose particle localization data set as an example,” Expert Syst. Appl., vol. 216, p. 119411, 2023, doi: https://doi.org/10.1016/j.eswa.2022.119411.

Q. Wang, Y. Xu, S. Yang, J. Chang, J. Zhang, and X. Kong, “A domain adaptation method for bearing fault diagnosis using multiple incomplete source data,” J. Intell. Manuf., vol. 35, no. 2, pp. 777–791, 2024, doi: 10.1007/s10845-023-02075-7.

T. M. Ghazal, M. K. Hasan, M. Ahmad, H. M. Alzoubi, and M. Alshurideh, “Machine Learning Approaches for Sustainable Cities Using Internet of Things BT - The Effect of Information Technology on Business and Marketing Intelligence Systems,” M. Alshurideh, B. H. Al Kurdi, R. Masa’deh, H. M. Alzoubi, and S. Salloum, Eds., Cham: Springer International Publishing, 2023, pp. 1969–1986. doi: 10.1007/978-3-031-12382-5_108.

J. Prakash, L. Murali, N. Manikandan, N. Nagaprasad, and K. Ramaswamy, “A vehicular network based intelligent transport system for smart cities using machine learning algorithms,” Sci. Rep., vol. 14, no. 1, p. 468, 2024, doi: 10.1038/s41598-023-50906-7.